Skip to content

Commit

Permalink
ADD: Adding new example for working with ARM QC and Xarray Transforma… (
Browse files Browse the repository at this point in the history
ARM-DOE#734)

* ADD: Adding new example for working with ARM QC and Xarray Transformations.  Updating one example to follow ds convention, and fixing warn message for armfiles

* ENH: PEP8 update

* DOC: test updates
  • Loading branch information
AdamTheisen authored Oct 13, 2023
1 parent 9ec9b2f commit 9550ffe
Show file tree
Hide file tree
Showing 3 changed files with 64 additions and 16 deletions.
2 changes: 1 addition & 1 deletion act/io/armfiles.py
Original file line number Diff line number Diff line change
Expand Up @@ -105,7 +105,7 @@ def read_netcdf(
"""

message = 'act.io.armfiles.read_netcdf will be replaced in version 2.0.0 by act.io.arm.read_netcdf()'
message = 'act.io.armfiles.read_netcdf will be replaced in version 2.0.0 by act.io.arm.read_arm_netcdf()'
warnings.warn(message, DeprecationWarning, 2)


Expand Down
30 changes: 15 additions & 15 deletions examples/qc/plot_arm_qc.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,11 +43,11 @@
# the cleanup_qc keyword. This will convert the quality control variable from the ARM stanard
# to Climate and Forecast standard used internally for all the quality control calls.
keep_vars = [variable, qc_variable, 'lat', 'lon']
obj = act.io.armfiles.read_netcdf(results, keep_variables=keep_vars, cleanup_qc=True)
print(obj)
ds = act.io.armfiles.read_netcdf(results, keep_variables=keep_vars, cleanup_qc=True)
print(ds)

# Create a plotting display object with 2 plots
display = act.plotting.TimeSeriesDisplay(obj, figsize=(15, 10), subplot_shape=(2,))
display = act.plotting.TimeSeriesDisplay(ds, figsize=(15, 10), subplot_shape=(2,))

# Plot up the diffuse variable in the first plot
display.plot(variable, subplot_index=(0,), day_night_background=True)
Expand All @@ -62,10 +62,10 @@
# By default the ancillary quality control variable is removed after appying the test
# results, but we are going to use the del_qc_var to keep in Dataset so it
# can be used with additional tests later.
obj.qcfilter.datafilter(variable, rm_tests=[2, 3], del_qc_var=False)
ds.qcfilter.datafilter(variable, rm_tests=[2, 3], del_qc_var=False)

# Create a plotting display object with 2 plots
display = act.plotting.TimeSeriesDisplay(obj, figsize=(15, 10), subplot_shape=(2,))
display = act.plotting.TimeSeriesDisplay(ds, figsize=(15, 10), subplot_shape=(2,))

# Plot up the diffuse variable in the first plot
display.plot(variable, subplot_index=(0,), day_night_background=True)
Expand All @@ -84,10 +84,10 @@

# Query the ARM DQR Webservice and update the ancillary quality control variable to
# contain a new test using information from the DQR.
obj = act.qc.arm.add_dqr_to_qc(obj, variable=variable)
ds = act.qc.arm.add_dqr_to_qc(ds, variable=variable)

# Create a plotting display object with 2 plots
display = act.plotting.TimeSeriesDisplay(obj, figsize=(15, 10), subplot_shape=(2,))
display = act.plotting.TimeSeriesDisplay(ds, figsize=(15, 10), subplot_shape=(2,))

# Plot up the diffuse variable in the first plot
display.plot(variable, subplot_index=(0,), day_night_background=True)
Expand All @@ -102,13 +102,13 @@
# going to filter the data based on this new test and plot up the results.

# Add a new maximum tests
obj.qcfilter.add_greater_test(variable, 0.4, test_meaning='New maximum tests limit')
ds.qcfilter.add_greater_test(variable, 0.4, test_meaning='New maximum tests limit')

# Filter that test out
obj.qcfilter.datafilter(variable, rm_tests=5, del_qc_var=False)
ds.qcfilter.datafilter(variable, rm_tests=5, del_qc_var=False)

# Create a plotting display object with 2 plots
display = act.plotting.TimeSeriesDisplay(obj, figsize=(15, 10), subplot_shape=(2,))
display = act.plotting.TimeSeriesDisplay(ds, figsize=(15, 10), subplot_shape=(2,))

# Plot up the diffuse variable in the first plot
display.plot(variable, subplot_index=(0,), day_night_background=True)
Expand All @@ -123,10 +123,10 @@
# it is applied in a moving window style approach.

# Apply test
obj = act.qc.fft_shading_test(obj, variable=variable)
ds = act.qc.fft_shading_test(ds, variable=variable)

# Create a plotting display object with 2 plots
display = act.plotting.TimeSeriesDisplay(obj, figsize=(15, 10), subplot_shape=(2,))
display = act.plotting.TimeSeriesDisplay(ds, figsize=(15, 10), subplot_shape=(2,))

# Plot up the diffuse variable in the first plot
display.plot(variable, subplot_index=(0,), day_night_background=True)
Expand All @@ -146,16 +146,16 @@
# incorrect or suspect values that can be read and applied to the Dataset.
from act.qc.add_supplemental_qc import apply_supplemental_qc

apply_supplemental_qc(obj, 'sgpmfrsr7nchE11.b1.yaml')
apply_supplemental_qc(ds, 'sgpmfrsr7nchE11.b1.yaml')

# We can apply or reapply the data filter on the variable in the Dataset to change
# the data values failing tests to NaN by passing a list of test numbers we want
# to use. In this case we are not going to apply the DQR test (number 4) so we leave
# that number out of the list.
obj.qcfilter.datafilter(variable, rm_tests=[2, 3, 5, 6, 7, 8], del_qc_var=False)
ds.qcfilter.datafilter(variable, rm_tests=[2, 3, 5, 6, 7, 8], del_qc_var=False)

# Create a plotting display object with 2 plots
display = act.plotting.TimeSeriesDisplay(obj, figsize=(15, 10), subplot_shape=(2,))
display = act.plotting.TimeSeriesDisplay(ds, figsize=(15, 10), subplot_shape=(2,))

# Plot up the diffuse variable in the first plot
display.plot(variable, subplot_index=(0,), day_night_background=True)
Expand Down
48 changes: 48 additions & 0 deletions examples/workflows/plot_qc_transforms.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
"""
Transformations and QC
----------------------
Built-in transformations using xarray are not
quality-control aware. This example shows how
a user should apply QC prior to performing transformations.
"""

import act
import xarray as xr
import matplotlib.pyplot as plt

# Read in some sample MFRSR data and clean up the QC
ds = act.io.armfiles.read_netcdf(act.tests.sample_files.EXAMPLE_MFRSR, cleanup_qc=True)

# Let's resample the data to 5 minutes and take the mean
ds_5min = ds.resample(time='5min').mean()

variable = 'diffuse_hemisp_narrowband_filter4'

# Let's look at a before and after of one of the qc variables
print('With no QC applied before transformation')
print('Before (10 1-minute samples): ', ds['qc_' + variable].values[0:10])
print('After: (2 5-minute averages)', ds_5min['qc_' + variable].values[0:2])

# That new QC variable does not make sense at all and should be an int
# What needs to happen is that we apply QC as the user see's fit to all
# variables before the transformations take place.
print('\nAverage of ', variable, ' before and after applying QC')
print('Note the change in the second value')
print('Before (2 5 - minute averages): ', ds[variable].values[0:2])

ds.qcfilter.datafilter(rm_assessments=['Bad', 'Indeterminate'])
ds_5minb = ds.resample(time='5min').mean()

# Print out the corresponding variable values
print('After: (2 5 - minute averages)', ds_5minb[variable].values[0:2])

## Plot up the variable and qc block plot
display = act.plotting.TimeSeriesDisplay({'Original': ds, 'Average': ds_5min, 'Average_QCd': ds_5minb},
figsize=(15, 10), subplot_shape=(2,))
display.plot(variable, dsname='Original', subplot_index=(0,), day_night_background=True)
display.plot(variable, dsname='Average', subplot_index=(1,), day_night_background=True, label='No QC')
display.plot(variable, dsname='Average_QCd', subplot_index=(1,), day_night_background=True, label='QC')
plt.legend()
plt.show()

0 comments on commit 9550ffe

Please sign in to comment.