Skip to content

Accompanying repo for the RLPrompt paper

License

Notifications You must be signed in to change notification settings

kaantureyyen/rl-prompt

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RL Prompt

This repo contains the code of the discrete prompt optimization framework described in the paper
RLPrompt: Optimizing Discrete Text Prompts With Reinforcement Learning
Mingkai Deng*, Jianyu Wang*, Cheng-Ping Hsieh* (equal contribution), Yihan Wang, Han Guo, Tianmin Shu, Meng Song, Eric P. Xing, Zhiting Hu

We will keep updating the codebase for easier usage and adaptation for your own tasks, so please stay tuned by starring or watching our repo!

Getting Started

  • Extensive recent work (e.g., this) has shown that prompting pre-trained LMs with specific text can steer them to perform various NLP tasks, without needing to update the model
  • Previous work has typically tuned soft prompts with gradient-based optimization or searched for discrete text prompts using various heuristics
  • In our paper, we propose to formulate discrete prompt optimization as an RL problem, and train a policy network to generate the prompt that optimizes a reward function
  • Compared to typical soft prompts, our discrete prompts are lightweight, interpretable, and transferrable across model types (e.g., RoBERTa to GPT-2) and sizes (e.g., small to large)
  • Check out more analyses at our paper here

Setting Up

Our codebase requires the following Python and PyTorch versions:

Install our core modules with

pip install -e .

Usage

Please refer to the folders in examples, which contains our implementations of 1) few-shot classification and 2) text style transfer, as described in our paper.

In short, the code in rlprompt provides the core components for prompt optimization. The task-specific folders in examples simply implement the reward functions and use the core modules to run experiments.

About

Accompanying repo for the RLPrompt paper

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%