Skip to content

Commit

Permalink
Merge pull request #2 from jwuphysics/better-documentation
Browse files Browse the repository at this point in the history
Add better documentation
  • Loading branch information
jwuphysics authored Dec 2, 2021
2 parents 9473579 + bf7d83f commit 7e35a53
Show file tree
Hide file tree
Showing 3 changed files with 211 additions and 182 deletions.
6 changes: 3 additions & 3 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -24,12 +24,12 @@ In addition to the stellar mass dependence, we also find a modest increase in sa

<img align="center" width=480px src="assets/morphology.png" alt="Satellite radial profiles as a function of host stellar mass, separated into disky and elliptical morphologies. Figure 7 from the xSAGA I paper."/>

### The satellite abundance correlates strongly with the magnitude gap between a host and its brightest satellite.**
### The satellite abundance correlates strongly with the magnitude gap between a host and its brightest satellite.
In the figure below, we now compute the total number of satellites within the projected virial radius, and plot it against the magnitude gap and host stellar mass.

<img align="center" width=480px src="assets/magnitude-gap.png" alt="The satellite abudance within the virial radius as a function of magnitude gap and host stellar mass. Figure 12 from the xSAGA I paper."/>

### "xSAGA confirms and extends key SAGA Survey results.
### xSAGA confirms and extends key SAGA Survey results.
We compare the radial profiles of satellites around isolated host galaxies in the same stellar mass range as SAGA (10<sup>10</sup>–10<sup>11</sup> M<sub>⊙</sub>; see figure below). Our results are in excellent agreement.

<img align="center" width=480px src="assets/saga-comparison.png" alt=" Part of Figure 6 from the xSAGA I paper."/>
Expand All @@ -47,7 +47,7 @@ We define CNN-selected galaxies as satellite galaxies if they are within 300 pro

## Figures and Code

All figures presented in our paper can be reproduced by running the cells in the `paper-figures.ipynb` Jupyter notebook. The notebook can be accessed through the [nbviewer website](https://nbviewer.org/github/jwuphysics/xSAGA/blob/main/paper-figures.ipynb).
All figures presented in our paper can be reproduced by running the cells in the `paper-figures.ipynb` Jupyter notebook. The notebook can be accessed through the [nbviewer website](https://nbviewer.org/github/jwuphysics/xSAGA/blob/main/paper-figures.ipynb). Note that the requirements in `requirements_at_publication.txt` must be used; otherwise there is a chance that the dependencies won't match.

The code used for this analysis can be found in `xsaga/`. Most of the relevant methods are located in `satellites.py` and `radial_profiles.py`.

Expand Down
208 changes: 29 additions & 179 deletions requirements.txt
Original file line number Diff line number Diff line change
@@ -1,179 +1,29 @@
# This file may be used to create an environment using:
# $ conda create --name <env> --file <this file>
# platform: linux-64
abundancematching=0.3.0=pypi_0
argon2-cffi=20.1.0=py38h7b6447c_1
astroml=0.4.1=pypi_0
astropy=4.0.1.post1=py38h1e0a361_0
async_generator=1.10=py_0
attrs=20.2.0=py_0
backcall=0.2.0=py_0
blas=1.0=mkl
bleach=3.2.1=py_0
brotlipy=0.7.0=py38h7b6447c_1000
bzip2=1.0.8=h516909a_3
c-ares=1.16.1=h516909a_3
ca-certificates=2020.7.22=0
catalogue=1.0.0=py38_1
certifi=2020.6.20=py38_0
cffi=1.14.3=py38he30daa8_0
chardet=3.0.4=py38_1003
cmasher=1.5.7=pypi_0
colorspacious=1.1.2=pypi_0
colossus=1.2.19=pypi_0
cramjam=2.3.2=pypi_0
cryptography=3.1.1=py38h1ba5d50_0
cudatoolkit=10.2.89=hfd86e86_1
cycler=0.10.0=py38_0
cymem=2.0.3=py38he6710b0_0
cython-blis=0.4.1=py38h7b6447c_1
dbus=1.13.12=h746ee38_0
decorator=4.4.2=py_0
defusedxml=0.6.0=py_0
e13tools=0.9.5=pypi_0
easyquery=0.1.6=pypi_0
emcee=3.1.1=pypi_0
entrypoints=0.3=py38_0
expat=2.2.9=he6710b0_2
fastai=2.0.13=py_0
fastcore=1.0.15=py_0
fastparquet=0.6.3=pypi_0
fastprogress=1.0.0=pyh39e3cac_0
fitsio=1.1.2=py38hff5d36a_0
fontconfig=2.13.0=h9420a91_0
freetype=2.10.2=h5ab3b9f_0
fsspec=2021.6.1=pypi_0
future=0.18.2=py38h32f6830_1
galcheat=0.0.4=pypi_0
glib=2.56.2=hd408876_0
gst-plugins-base=1.14.0=hbbd80ab_1
gstreamer=1.14.0=hb453b48_1
icu=58.2=he6710b0_3
idna=2.10=py_0
importlib-metadata=1.7.0=py38_0
importlib_metadata=1.7.0=0
intel-openmp=2020.2=254
ipykernel=5.3.4=py38h5ca1d4c_0
ipython=7.18.1=py38h5ca1d4c_0
ipython_genutils=0.2.0=py38_0
ipywidgets=7.5.1=py_0
jedi=0.17.2=py38_0
jinja2=2.11.2=py_0
joblib=0.16.0=py_0
jpeg=9b=habf39ab_1
jsonschema=3.0.2=py38_0
jupyter=1.0.0=py38_7
jupyter_client=6.1.7=py_0
jupyter_console=6.2.0=py_0
jupyter_core=4.6.3=py38_0
jupyterlab_pygments=0.1.1=py_0
kiwisolver=1.2.0=py38hfd86e86_0
krb5=1.17.1=hfafb76e_3
lcms2=2.11=h396b838_0
ld_impl_linux-64=2.33.1=h53a641e_7
libcurl=7.71.1=hcdd3856_6
libedit=3.1.20191231=h14c3975_1
libev=4.33=h516909a_1
libffi=3.3=he6710b0_2
libgcc-ng=9.1.0=hdf63c60_0
libgfortran-ng=7.3.0=hdf63c60_0
libnghttp2=1.41.0=h8cfc5f6_2
libpng=1.6.37=hbc83047_0
libsodium=1.0.18=h7b6447c_0
libssh2=1.9.0=hab1572f_5
libstdcxx-ng=9.1.0=hdf63c60_0
libtiff=4.1.0=h2733197_1
libuuid=1.0.3=h1bed415_2
libxcb=1.14=h7b6447c_0
libxml2=2.9.10=he19cac6_1
lsstdesc.coord=1.2.1=py38hbf85e49_0
lz4-c=1.9.2=he6710b0_1
markupsafe=1.1.1=py38h7b6447c_0
matplotlib=3.3.1=0
matplotlib-base=3.3.1=py38h817c723_0
mistune=0.8.4=py38h7b6447c_1000
mkl=2019.4=243
mkl-service=2.3.0=py38he904b0f_0
mkl_fft=1.2.0=py38h23d657b_0
mkl_random=1.1.0=py38h962f231_0
murmurhash=1.0.2=py38he6710b0_0
nbclient=0.5.0=py_0
nbconvert=6.0.6=py38_0
nbformat=5.0.7=py_0
ncurses=6.2=he6710b0_1
nest-asyncio=1.4.0=py_1
ninja=1.10.1=py38hfd86e86_0
notebook=6.1.1=py38_0
numexpr=2.7.3=pypi_0
numpy=1.19.1=py38hbc911f0_0
numpy-base=1.19.1=py38hfa32c7d_0
olefile=0.46=py_0
openssl=1.1.1h=h516909a_0
packaging=20.4=py_0
pandas=1.1.1=py38he6710b0_0
pandoc=2.10.1=0
pandocfilters=1.4.2=py38_1
parso=0.7.0=py_0
pcre=8.44=he6710b0_0
pexpect=4.8.0=py38_0
pickleshare=0.7.5=py38_1000
pillow=7.2.0=py38hb39fc2d_0
pip=20.2.2=py38_0
plac=0.9.6=py38_1
preshed=3.0.2=py38he6710b0_1
prometheus_client=0.8.0=py_0
prompt-toolkit=3.0.7=py_0
prompt_toolkit=3.0.7=0
ptyprocess=0.6.0=py38_0
pycparser=2.20=py_2
pygments=2.7.1=py_0
pyopenssl=19.1.0=py_1
pyparsing=2.4.7=py_0
pyqt=5.9.2=py38h05f1152_4
pyrsistent=0.17.3=py38h7b6447c_0
pysocks=1.7.1=py38_0
python=3.8.5=h7579374_1
python-dateutil=2.8.1=py_0
python_abi=3.8=1_cp38
pytorch=1.6.0=py3.8_cuda10.2.89_cudnn7.6.5_0
pytz=2020.1=py_0
pyyaml=5.3.1=py38h7b6447c_1
pyzmq=19.0.2=py38he6710b0_1
qt=5.9.7=h5867ecd_1
qtconsole=4.7.7=py_0
qtpy=1.9.0=py_0
readline=8.0=h7b6447c_0
requests=2.24.0=py_0
scikit-learn=0.23.2=py38h0573a6f_0
scipy=1.5.2=py38h0b6359f_0
seaborn=0.11.1=pypi_0
send2trash=1.5.0=py38_0
setuptools=49.6.0=py38_0
sip=4.19.24=py38he6710b0_0
six=1.15.0=py_0
spacy=2.3.2=py38hfd86e86_0
sqlite=3.33.0=h62c20be_0
srsly=1.0.2=py38he6710b0_0
terminado=0.8.3=py38_0
testpath=0.4.4=py_0
thinc=7.4.1=py38hfd86e86_0
threadpoolctl=2.1.0=pyh5ca1d4c_0
thrift=0.13.0=pypi_0
tk=8.6.10=hbc83047_0
torchvision=0.7.0=py38_cu102
tornado=6.0.4=py38h7b6447c_1
tqdm=4.49.0=py_0
traitlets=4.3.3=py38_0
treecorr=4.1.5=py38h950e882_0
urllib3=1.25.10=py_0
wasabi=0.8.0=py_0
wcwidth=0.2.5=py_0
webencodings=0.5.1=py38_1
wheel=0.35.1=py_0
widgetsnbextension=3.5.1=py38_0
xz=5.2.5=h7b6447c_0
yaml=0.2.5=h7b6447c_0
zeromq=4.3.2=he6710b0_3
zipp=3.1.0=py_0
zlib=1.2.11=h7b6447c_3
zstd=1.4.4=h0b5b093_3
astroml
astropy
cmasher
colossus
easyquery
fastai
fastcore
fastparquet
fastprogress
fitsio
ipykernel
ipython
jupyter
matplotlib
notebook
numexpr
numpy
pandas
pillow
pip
python
pytorch
requests
scikit-learn
scipy
torchvision
tqdm
treecorr
yaml
Loading

0 comments on commit 7e35a53

Please sign in to comment.