Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add lp_matrix_data #3573

Merged
merged 8 commits into from
Nov 21, 2023
Merged
Show file tree
Hide file tree
Changes from 7 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
66 changes: 66 additions & 0 deletions docs/src/manual/models.md
Original file line number Diff line number Diff line change
Expand Up @@ -439,6 +439,72 @@ optimize!(model)
reduced_cost(x) # Works
```

## Get the matrix representation

Use [`lp_matrix_data`](@ref) to return a data structure that represents the
matrix form of a linear program.

```jldoctest
julia> begin
model = Model()
@variable(model, x >= 1)
@variable(model, 2 <= y)
@variable(model, 3 <= z <= 4)
@constraint(model, x == 5)
@constraint(model, 2x + 3y <= 6)
@constraint(model, -4y >= 5z + 7)
@constraint(model, -1 <= x + y <= 2)
@objective(model, Max, 1 + 2x)
end;

julia> data = lp_matrix_data(model);

julia> data.A
4×3 SparseArrays.SparseMatrixCSC{Float64, Int64} with 7 stored entries:
1.0 ⋅ ⋅
⋅ -4.0 -5.0
2.0 3.0 ⋅
1.0 1.0 ⋅

julia> data.b_lower
4-element Vector{Float64}:
5.0
7.0
-Inf
-1.0

julia> data.b_upper
4-element Vector{Float64}:
5.0
Inf
6.0
2.0

julia> data.x_lower
3-element Vector{Float64}:
1.0
2.0
3.0

julia> data.x_upper
3-element Vector{Float64}:
Inf
Inf
4.0

julia> data.c
3-element Vector{Float64}:
2.0
0.0
0.0

julia> data.c_offset
1.0

julia> data.sense
MAX_SENSE::OptimizationSense = 1
```

## Backends

!!! info
Expand Down
1 change: 1 addition & 0 deletions src/JuMP.jl
Original file line number Diff line number Diff line change
Expand Up @@ -1091,6 +1091,7 @@ include("complement.jl")
include("copy.jl")
include("feasibility_checker.jl")
include("file_formats.jl")
include("lp_matrix_data.jl")
include("lp_sensitivity2.jl")
include("indicator.jl")
include("reified.jl")
Expand Down
192 changes: 192 additions & 0 deletions src/lp_matrix_data.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,192 @@
# Copyright 2017, Iain Dunning, Joey Huchette, Miles Lubin, and contributors
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at http://mozilla.org/MPL/2.0/.

"""
LPMatrixData{T}

The struct returned by [`lp_matrix_data`](@ref). See [`lp_matrix_data`](@ref)
for a description of the public fields.
"""
struct LPMatrixData{T}
A::SparseArrays.SparseMatrixCSC{T,Int}
b_lower::Vector{T}
b_upper::Vector{T}
x_lower::Vector{T}
x_upper::Vector{T}
c::Vector{T}
c_offset::T
sense::MOI.OptimizationSense
variable_to_column::Dict{GenericVariableRef{T},Int}
odow marked this conversation as resolved.
Show resolved Hide resolved
affine_constraints::Vector{ConstraintRef}
variable_constraints::Vector{ConstraintRef}
end

"""
lp_matrix_data(model::GenericModel{T})

Given a JuMP model of a linear program, return an [`LPMatrixData{T}`](@ref)
struct storing data for an equivalent linear program in the form:
```math
\\begin{aligned}
\\min & c^\\top x + c_0\\
& b_l \\le A x \\le b_u \\
& x_l \\le x \\le x_u
\\end{aligned}
```

## Fields

The struct returned by [`lp_matrix_data`](@ref) has the fields:

* `A::SparseArrays.SparseMatrixCSC{T,Int}`: the constraint matrix in sparse
matrix form.
* `b_lower::Vector{T}`: the dense vector of row lower bounds. If missing, the
value of `typemin(T)` is used.
* `b_upper::Vector{T}`: the dense vector of row upper bounds. If missing, the
value of `typemax(T)` is used.
* `x_lower::Vector{T}`: the dense vector of variable lower bounds. If missing,
the value of `typemin(T)` is used.
* `x_upper::Vector{T}`: the dense vector of variable upper bounds. If missing,
the value of `typemax(T)` is used.
* `c::Vector{T}`: the dense vector of linear objective coefficiennts
* `c_offset::T`: the constant term in the objective function.
* `sense::MOI.OptimizationSense`: the objective sense of the model.
* `variable_to_column::Dict{GenericVariableRef{T},Int}`: a dictionary mapping
JuMP [`GenericVariableRef`](@ref) to the 1-indexed column in the matrix
representation.
* `affine_constraints::Vector{ConstraintRef}`: a vector of [`ConstraintRef`](@ref),
corresponding to the order of rows in the matrix form.

## Limitations

The models supported by [`lp_matrix_data`](@ref) are intentionally limited
to linear programs.

If your model has integrality, use [`relax_integrality`](@ref) to remove integer
restrictions before calling [`lp_matrix_data`](@ref).
"""
function lp_matrix_data(model::GenericModel{T}) where {T}
columns = Dict(var => i for (i, var) in enumerate(all_variables(model)))
n = length(columns)
cache = (;
x_l = fill(typemin(T), n),
x_u = fill(typemax(T), n),
c = zeros(T, n),
c_offset = Ref{T}(zero(T)),
b_l = T[],
b_u = T[],
I = Int[],
J = Int[],
V = T[],
variable_to_column = columns,
bound_constraints = ConstraintRef[],
affine_constraints = ConstraintRef[],
)
for (F, S) in list_of_constraint_types(model)
_fill_standard_form(model, F, S, cache)
end
_fill_standard_form(model, objective_function_type(model), cache)
return LPMatrixData(
SparseArrays.sparse(cache.I, cache.J, cache.V, length(cache.b_l), n),
cache.b_l,
cache.b_u,
cache.x_l,
cache.x_u,
cache.c,
cache.c_offset[],
MOI.get(model, MOI.ObjectiveSense()),
cache.variable_to_column,
cache.affine_constraints,
cache.bound_constraints,
)
end

_bounds(s::MOI.LessThan{T}) where {T} = (typemin(T), s.upper)
_bounds(s::MOI.GreaterThan{T}) where {T} = (s.lower, typemax(T))
_bounds(s::MOI.EqualTo{T}) where {T} = (s.value, s.value)
_bounds(s::MOI.Interval{T}) where {T} = (s.lower, s.upper)

function _fill_standard_form(
model::GenericModel{T},
::Type{GenericVariableRef{T}},
::Type{S},
cache::Any,
) where {
T,
S<:Union{MOI.LessThan{T},MOI.GreaterThan{T},MOI.EqualTo{T},MOI.Interval{T}},
}
for c in all_constraints(model, GenericVariableRef{T}, S)
push!(cache.bound_constraints, c)
c_obj = constraint_object(c)
i = cache.variable_to_column[c_obj.func]
l, u = _bounds(c_obj.set)
cache.x_l[i] = max(cache.x_l[i], l)
cache.x_u[i] = min(cache.x_u[i], u)
end
return
end

function _fill_standard_form(
model::GenericModel{T},
::Type{F},
::Type{S},
cache::Any,
) where {
T,
F<:GenericAffExpr{T,GenericVariableRef{T}},
S<:Union{MOI.LessThan{T},MOI.GreaterThan{T},MOI.EqualTo{T},MOI.Interval{T}},
}
for c in all_constraints(model, F, S)
push!(cache.affine_constraints, c)
c_obj = constraint_object(c)
@assert iszero(c_obj.func.constant)
row = length(cache.b_l) + 1
l, u = _bounds(c_obj.set)
push!(cache.b_l, l)
push!(cache.b_u, u)
for (x, coef) in c_obj.func.terms
push!(cache.I, row)
push!(cache.J, cache.variable_to_column[x])
push!(cache.V, coef)
end
end
return
end

function _fill_standard_form(
::GenericModel{T},
::Type{F},
::Type{S},
::Any,
) where {T,F,S}
return error("Unsupported constraint type in `lp_matrix_data`: $F -in- $S")
end

function _fill_standard_form(
model::GenericModel{T},
::Type{GenericVariableRef{T}},
cache::Any,
) where {T}
cache.c[cache.variable_to_column[objective_function(model)]] = one(T)
cache.c_offset[] = zero(T)
return
end

function _fill_standard_form(
model::GenericModel{T},
::Type{GenericAffExpr{T,GenericVariableRef{T}}},
cache::Any,
) where {T}
f = objective_function(model)
for (k, v) in f.terms
cache.c[cache.variable_to_column[k]] += v
end
cache.c_offset[] = f.constant
return
end

function _fill_standard_form(::GenericModel{T}, ::Type{F}, ::Any) where {T,F}
return error("Unsupported objective type in `lp_matrix_data`: $F")
end
111 changes: 9 additions & 102 deletions src/lp_sensitivity2.jl
Original file line number Diff line number Diff line change
Expand Up @@ -325,114 +325,21 @@ end
"""
_standard_form_matrix(model::GenericModel)

Given a problem:

r_l <= Ax <= r_u
c_l <= x <= c_u

Return the standard form:

[A -I] [x, y] = 0
[c_l, r_l] <= [x, y] <= [c_u, r_u]

`columns` maps the variable references to column indices.
See [`lp_matrix_data`](@ref) instead.
"""
function _standard_form_matrix(model::GenericModel{T}) where {T}
columns = Dict(var => i for (i, var) in enumerate(all_variables(model)))
n = length(columns)
c_l, c_u = fill(typemin(T), n), fill(typemax(T), n)
r_l, r_u = T[], T[]
I, J, V = Int[], Int[], T[]
bound_constraints = ConstraintRef[]
affine_constraints = ConstraintRef[]
for (F, S) in list_of_constraint_types(model)
_fill_standard_form(
model,
columns,
bound_constraints,
affine_constraints,
F,
S,
c_l,
c_u,
r_l,
r_u,
I,
J,
V,
)
end
matrix = lp_matrix_data(model)
I = SparseArrays.spdiagm(fill(-one(T), length(matrix.affine_constraints)))
return (
columns = columns,
lower = vcat(c_l, r_l),
upper = vcat(c_u, r_u),
A = SparseArrays.sparse(I, J, V, length(r_l), n + length(r_l)),
bounds = bound_constraints,
constraints = affine_constraints,
columns = matrix.variable_to_column,
lower = vcat(matrix.x_lower, matrix.b_lower),
upper = vcat(matrix.x_upper, matrix.b_upper),
A = hcat(matrix.A, I),
bounds = matrix.variable_constraints,
constraints = matrix.affine_constraints,
)
end

function _fill_standard_form(
model::GenericModel{T},
x::Dict{GenericVariableRef{T},Int},
bound_constraints::Vector{ConstraintRef},
::Vector{ConstraintRef},
F::Type{GenericVariableRef{T}},
S::Type,
c_l::Vector{T},
c_u::Vector{T},
::Vector{T},
::Vector{T},
::Vector{Int},
::Vector{Int},
::Vector{T},
) where {T}
for c in all_constraints(model, F, S)
push!(bound_constraints, c)
c_obj = constraint_object(c)
i = x[c_obj.func]
set = MOI.Interval(c_obj.set)
c_l[i] = max(c_l[i], set.lower)
c_u[i] = min(c_u[i], set.upper)
end
return
end

function _fill_standard_form(
model::GenericModel{T},
x::Dict{GenericVariableRef{T},Int},
::Vector{ConstraintRef},
affine_constraints::Vector{ConstraintRef},
F::Type{<:GenericAffExpr},
S::Type,
::Vector{T},
::Vector{T},
r_l::Vector{T},
r_u::Vector{T},
I::Vector{Int},
J::Vector{Int},
V::Vector{T},
) where {T}
for c in all_constraints(model, F, S)
push!(affine_constraints, c)
c_obj = constraint_object(c)
@assert iszero(c_obj.func.constant)
row = length(r_l) + 1
set = MOI.Interval(c_obj.set)
push!(r_l, set.lower)
push!(r_u, set.upper)
for (var, coef) in c_obj.func.terms
push!(I, row)
push!(J, x[var])
push!(V, coef)
end
push!(I, row)
push!(J, length(x) + row)
push!(V, -one(T))
end
return
end

_convert_nonbasic_status(::MOI.LessThan) = MOI.NONBASIC_AT_UPPER
_convert_nonbasic_status(::MOI.GreaterThan) = MOI.NONBASIC_AT_LOWER
_convert_nonbasic_status(::Any) = MOI.NONBASIC
Expand Down
Loading
Loading