Skip to content

Commit

Permalink
Fix various JET errors
Browse files Browse the repository at this point in the history
  • Loading branch information
odow committed Sep 20, 2023
1 parent 1cd82da commit c40712f
Show file tree
Hide file tree
Showing 6 changed files with 49 additions and 39 deletions.
5 changes: 3 additions & 2 deletions src/copy.jl
Original file line number Diff line number Diff line change
Expand Up @@ -323,11 +323,12 @@ function Base.deepcopy(::GenericModel)
end

function MOI.copy_to(dest::MOI.ModelLike, src::GenericModel)
if nonlinear_model(src) !== nothing
nlp = nonlinear_model(src)
if nlp !== nothing
# Re-set the NLP block in-case things have changed since last
# solve.
evaluator = MOI.Nonlinear.Evaluator(
nonlinear_model(src),
nlp,
MOI.Nonlinear.SparseReverseMode(),
index.(all_variables(src)),
)
Expand Down
58 changes: 31 additions & 27 deletions src/nlp.jl
Original file line number Diff line number Diff line change
Expand Up @@ -162,9 +162,9 @@ julia> set_nonlinear_objective(model, MIN_SENSE, :(\$(x) + \$(x)^2))
```
"""
function set_nonlinear_objective(model::Model, sense::MOI.OptimizationSense, x)
_init_NLP(model)
set_objective_sense(model, sense)
MOI.Nonlinear.set_objective(model.nlp_model, x)
nlp = nonlinear_model(model; force = true)::MOI.Nonlinear.Model
MOI.Nonlinear.set_objective(nlp, x)
return
end

Expand All @@ -178,7 +178,7 @@ function _nlp_objective_function(model::GenericModel)
if model.nlp_model === nothing
return nothing
end
return model.nlp_model.objective
return something(model.nlp_model).objective
end

###
Expand Down Expand Up @@ -213,8 +213,8 @@ end
Add an anonymous parameter to the model.
"""
function add_nonlinear_parameter(model::Model, value::Real)
_init_NLP(model)
p = MOI.Nonlinear.add_parameter(model.nlp_model, Float64(value))
nlp = nonlinear_model(model; force = true)::MOI.Nonlinear.Model
p = MOI.Nonlinear.add_parameter(nlp, Float64(value))
return NonlinearParameter(model, p.value)
end

Expand Down Expand Up @@ -243,7 +243,8 @@ julia> value(p)
```
"""
function value(p::NonlinearParameter)
return p.model.nlp_model[MOI.Nonlinear.ParameterIndex(p.index)]
nlp = nonlinear_model(p.model; force = true)::MOI.Nonlinear.Model
return nlp[MOI.Nonlinear.ParameterIndex(p.index)]
end

"""
Expand All @@ -267,7 +268,8 @@ julia> value(p)
```
"""
function set_value(p::NonlinearParameter, value::Number)
p.model.nlp_model[MOI.Nonlinear.ParameterIndex(p.index)] = value
nlp = nonlinear_model(p.model; force = true)::MOI.Nonlinear.Model
nlp[MOI.Nonlinear.ParameterIndex(p.index)] = value
return value
end

Expand Down Expand Up @@ -328,8 +330,8 @@ subexpression[1]: x + x ^ 2.0
```
"""
function add_nonlinear_expression(model::Model, ex)
_init_NLP(model)
index = MOI.Nonlinear.add_expression(model.nlp_model, ex)
nlp = nonlinear_model(model; force = true)::MOI.Nonlinear.Model
index = MOI.Nonlinear.add_expression(nlp, ex)
return NonlinearExpression(model, index.value)
end

Expand Down Expand Up @@ -379,9 +381,10 @@ end
Evaluate `ex` using `var_value(v)` as the value for each variable `v`.
"""
function value(var_value::Function, ex::NonlinearExpression)
nlp = nonlinear_model(ex.model; force = true)::MOI.Nonlinear.Model
return MOI.Nonlinear.evaluate(
_VariableValueMap(ex.model, var_value),
ex.model.nlp_model,
nlp,
MOI.Nonlinear.ExpressionIndex(ex.index),
)
end
Expand Down Expand Up @@ -461,9 +464,9 @@ julia> add_nonlinear_constraint(model, :(\$(x) + \$(x)^2 <= 1))
```
"""
function add_nonlinear_constraint(model::Model, ex::Expr)
_init_NLP(model)
nlp = nonlinear_model(model; force = true)::MOI.Nonlinear.Model
f, set = _expr_to_constraint(ex)
c = MOI.Nonlinear.add_constraint(model.nlp_model, f, set)
c = MOI.Nonlinear.add_constraint(nlp, f, set)
return ConstraintRef(model, c, ScalarShape())
end

Expand All @@ -476,9 +479,9 @@ function is_valid(model::Model, c::NonlinearConstraintRef)
if model !== c.model
return false
end
_init_NLP(model)
nlp = nonlinear_model(model; force = true)::MOI.Nonlinear.Model
index = MOI.Nonlinear.ConstraintIndex(c.index.value)
return MOI.is_valid(model.nlp_model, index)
return MOI.is_valid(nlp, index)
end

"""
Expand All @@ -487,9 +490,9 @@ end
Delete the nonlinear constraint `c` from `model`.
"""
function delete(model::Model, c::NonlinearConstraintRef)
_init_NLP(model)
nlp = nonlinear_model(model; force = true)::MOI.Nonlinear.Model
index = MOI.Nonlinear.ConstraintIndex(c.index.value)
MOI.Nonlinear.delete(model.nlp_model, index)
MOI.Nonlinear.delete(nlp, index)
return
end

Expand Down Expand Up @@ -544,10 +547,11 @@ Evaluate `c` using `var_value(v)` as the value for each variable `v`.
"""
function value(var_value::Function, c::NonlinearConstraintRef)
index = MOI.Nonlinear.ConstraintIndex(c.index.value)
nlp = nonlinear_model(c.model; force = true)::MOI.Nonlinear.Model
return MOI.Nonlinear.evaluate(
_VariableValueMap(c.model, var_value),
c.model.nlp_model,
c.model.nlp_model[index].expression,
nlp,
nlp[index].expression,
)
end

Expand Down Expand Up @@ -712,8 +716,8 @@ function register(
if autodiff == false
error("If only the function is provided, must set autodiff=true")
end
_init_NLP(model)
MOI.Nonlinear.register_operator(model.nlp_model, op, dimension, f)
nlp = nonlinear_model(model; force = true)::MOI.Nonlinear.Model
MOI.Nonlinear.register_operator(nlp, op, dimension, f)
return
end

Expand Down Expand Up @@ -796,19 +800,19 @@ function register(
∇f::Function;
autodiff::Bool = false,
)
_init_NLP(model)
nlp = nonlinear_model(model; force = true)::MOI.Nonlinear.Model
if dimension == 1
if autodiff == false
error(
"Currently must provide 2nd order derivatives of univariate functions. Try setting autodiff=true.",
)
end
MOI.Nonlinear.register_operator(model.nlp_model, op, dimension, f, ∇f)
MOI.Nonlinear.register_operator(nlp, op, dimension, f, ∇f)
else
if autodiff == true
@warn("autodiff = true ignored since gradient is already provided.")
end
MOI.Nonlinear.register_operator(model.nlp_model, op, dimension, f, ∇f)
MOI.Nonlinear.register_operator(nlp, op, dimension, f, ∇f)
end
return
end
Expand Down Expand Up @@ -869,8 +873,8 @@ function register(
∇f::Function,
∇²f::Function,
)
_init_NLP(model)
MOI.Nonlinear.register_operator(model.nlp_model, op, dimension, f, ∇f, ∇²f)
nlp = nonlinear_model(model; force = true)::MOI.Nonlinear.Model
MOI.Nonlinear.register_operator(nlp, op, dimension, f, ∇f, ∇²f)
return
end

Expand Down Expand Up @@ -898,9 +902,9 @@ function NLPEvaluator(
model::Model;
_differentiation_backend::MOI.Nonlinear.AbstractAutomaticDifferentiation = MOI.Nonlinear.SparseReverseMode(),
)
_init_NLP(model)
nlp = nonlinear_model(model; force = true)::MOI.Nonlinear.Model
return MOI.Nonlinear.Evaluator(
model.nlp_model,
nlp,
_differentiation_backend,
index.(all_variables(model)),
)
Expand Down
2 changes: 1 addition & 1 deletion src/nlp_expr.jl
Original file line number Diff line number Diff line change
Expand Up @@ -577,7 +577,7 @@ end
moi_function_type(::Type{<:GenericNonlinearExpr}) = MOI.ScalarNonlinearFunction

function constraint_object(c::NonlinearConstraintRef)
nlp = nonlinear_model(c.model)
nlp = nonlinear_model(c.model)::MOI.Nonlinear.Model
data = nlp.constraints[index(c)]
return ScalarConstraint(jump_function(c.model, data.expression), data.set)
end
Expand Down
5 changes: 3 additions & 2 deletions src/objective.jl
Original file line number Diff line number Diff line change
Expand Up @@ -118,8 +118,9 @@ function set_objective_function(model::GenericModel, func::MOI.AbstractFunction)
MOI.set(model, attr, func)
# Nonlinear objectives override regular objectives, so if there was a
# nonlinear objective set, we must clear it.
if nonlinear_model(model) !== nothing
MOI.Nonlinear.set_objective(nonlinear_model(model), nothing)
nlp = nonlinear_model(model)
if nlp !== nothing
MOI.Nonlinear.set_objective(nlp, nothing)
end
return
end
Expand Down
5 changes: 3 additions & 2 deletions src/optimizer_interface.jl
Original file line number Diff line number Diff line change
Expand Up @@ -414,7 +414,8 @@ function optimize!(
)
# The nlp_model is not kept in sync, so re-set it here.
# TODO: Consider how to handle incremental solves.
if nonlinear_model(model) !== nothing
nlp = nonlinear_model(model)
if nlp !== nothing
if _uses_new_nonlinear_interface(model)
error(
"Cannot optimize a model which contains the features from " *
Expand All @@ -424,7 +425,7 @@ function optimize!(
)
end
evaluator = MOI.Nonlinear.Evaluator(
nonlinear_model(model),
nlp,
_differentiation_backend,
index.(all_variables(model)),
)
Expand Down
13 changes: 8 additions & 5 deletions src/print.jl
Original file line number Diff line number Diff line change
Expand Up @@ -399,7 +399,8 @@ function nonlinear_constraint_string(
mode::MIME,
c::MOI.Nonlinear.ConstraintIndex,
)
constraint = nonlinear_model(model)[c]
nlp = nonlinear_model(model)::MOI.Nonlinear.Model
constraint = nlp[c]
body = nonlinear_expr_string(model, mode, constraint.expression)
lhs = _set_lhs(constraint.set)
rhs = _set_rhs(constraint.set)
Expand Down Expand Up @@ -442,7 +443,8 @@ function nonlinear_expr_string(
mode::MIME,
c::MOI.Nonlinear.Expression,
)
expr = MOI.Nonlinear.convert_to_expr(nonlinear_model(model), c)
nlp = nonlinear_model(model)::MOI.Nonlinear.Model
expr = MOI.Nonlinear.convert_to_expr(nlp, c)
# Walk terms, and replace
# MOI.VariableIndex => VariableRef
# MOI.Nonlinear.ExpressionIndex => _NonlinearExpressionIO
Expand Down Expand Up @@ -588,7 +590,7 @@ function function_string(mode::MIME"text/latex", v::AbstractVariableRef)
# Convert any x[args] to x_{args} so that indices on x print as subscripts.
m = match(r"^(.*)\[(.+)\]$", var_name)
if m !== nothing
var_name = m[1] * "_{" * m[2] * "}"
return string(m[1]::AbstractString, "_{", m[2]::AbstractString, "}")
end
return var_name
end
Expand Down Expand Up @@ -655,7 +657,7 @@ function function_string(mode, q::GenericQuadExpr)
end

function function_string(mode, vector::Vector{<:AbstractJuMPScalar})
return "[" * join(function_string.(Ref(mode), vector), ", ") * "]"
return string("[", join(function_string.(Ref(mode), vector), ", "), "]")
end

function function_string(
Expand Down Expand Up @@ -702,7 +704,8 @@ function function_string(mode, constraint::AbstractConstraint)
end

function function_string(mode::MIME, p::NonlinearExpression)
expr = nonlinear_model(p.model)[index(p)]
nlp = nonlinear_model(p.model)::MOI.Nonlinear.Model
expr = nlp[index(p)]
s = nonlinear_expr_string(p.model, mode, expr)
return "subexpression[$(p.index)]: " * s
end
Expand Down

0 comments on commit c40712f

Please sign in to comment.