Skip to content

Commit

Permalink
Update
Browse files Browse the repository at this point in the history
  • Loading branch information
odow committed Oct 9, 2024
1 parent af91cd9 commit 4b121d5
Showing 1 changed file with 31 additions and 8 deletions.
39 changes: 31 additions & 8 deletions docs/src/tutorials/algorithms/pdhg.jl
Original file line number Diff line number Diff line change
Expand Up @@ -52,7 +52,8 @@ import SparseArrays
#
# Note that this implementation is intentionally kept simple. It is not robust
# nor efficient, and it does not incorporate the theoretical improvements in the
# PDLP paper.
# PDLP paper. It does use two workspace vectors so that the body of the
# iteration loop is non-allocating.

function solve_pdhg(
A::SparseArrays.SparseMatrixCSC{Float64,Int},
Expand All @@ -67,20 +68,42 @@ function solve_pdhg(
printf(x::Int) = Printf.@sprintf("%6d", x)
m, n = size(A)
η = τ = 1 / LinearAlgebra.norm(A) - 1e-6
x, y, k, status = zeros(n), zeros(m), 0, MOI.OTHER_ERROR
x, x_next, y, k, status = zeros(n), zeros(n), zeros(m), 0, MOI.OTHER_ERROR
m_workspace, n_workspace = zeros(m), zeros(n)
if verbose
println(
" iter pobj dobj pfeas dfeas objfeas",
)
end
while status == MOI.OTHER_ERROR
x_next = max.(0.0, x - η * (A' * y + c))
y += τ * (A * (2 * x_next - x) - b)
x = x_next
k += 1
pfeas = LinearAlgebra.norm(A * x - b)
dfeas = LinearAlgebra.norm(max.(0.0, -A' * y - c))
objfeas = abs(c' * x - -b' * y)
## =====================================================================
## This block computes x_next = max.(0.0, x - η * (A' * y + c))
LinearAlgebra.mul!(x_next, A', y)
LinearAlgebra.axpby!(-η, c, -η, x_next)
x_next .+= x
x_next .= max.(0.0, x_next)
## =====================================================================
## This block computes y += τ * (A * (2 * x_next - x) - b)
copy!(n_workspace, x_next)
LinearAlgebra.axpby!(-1.0, x, 2.0, n_workspace)
LinearAlgebra.mul!(y, A, n_workspace, τ, 1.0)
LinearAlgebra.axpy!(-τ, b, y)
## =====================================================================
copy!(x, x_next)
## =====================================================================
## This block computes pfeas = LinearAlgebra.norm(A * x - b)
LinearAlgebra.mul!(m_workspace, A, x)
m_workspace .-= b
pfeas = LinearAlgebra.norm(m_workspace)
## =====================================================================
## This block computes dfeas = LinearAlgebra.norm(min.(0.0, A' * y + c))
LinearAlgebra.mul!(n_workspace, A', y)
n_workspace .+= c
n_workspace .= min.(0.0, n_workspace)
dfeas = LinearAlgebra.norm(n_workspace)
## =====================================================================
objfeas = abs(LinearAlgebra.dot(c, x) + LinearAlgebra.dot(b, y))
if pfeas <= tol && dfeas <= tol && objfeas <= tol
status = MOI.OPTIMAL
elseif k == maximum_iterations
Expand Down

0 comments on commit 4b121d5

Please sign in to comment.