Skip to content

Commit

Permalink
Fix querying dual of Symmetric and Hermitian equality constraints
Browse files Browse the repository at this point in the history
  • Loading branch information
odow committed Aug 5, 2024
1 parent bf662d4 commit 39b99bc
Show file tree
Hide file tree
Showing 3 changed files with 166 additions and 9 deletions.
160 changes: 153 additions & 7 deletions src/sd.jl
Original file line number Diff line number Diff line change
Expand Up @@ -141,15 +141,50 @@ MathOptInterface.PositiveSemidefiniteConeTriangle(2)
struct PSDCone end

"""
SymmetricMatrixShape
SymmetricMatrixShape(
side_dimension::Int;
needs_adjoint_dual::Bool = false,
)
The shape object for a symmetric square matrix of `side_dimension` rows and
columns.
Shape object for a symmetric square matrix of `side_dimension` rows and columns.
The vectorized form contains the entries of the upper-right triangular part of
the matrix given column by column (or equivalently, the entries of the
lower-left triangular part given row by row).
## `needs_adjoint_dual`
By default, the [`dual_shape`](@ref) of [`SymmetricMatrixShape`](@ref) is also
[`SymmetricMatrixShape`](@ref). This is true for cases such as a
`LinearAlgebra.Symmetric` matrix in [`PSDCone`](@ref).
However, JuMP also supports `LinearAlgebra.Symmetric` matrix in `Zeros`, which
is interpreted as an element-wise equality constraint. By exploiting symmetry,
we pass only the upper triangle of the equality constraints. This works for the
primal, but it leads to a factor of 2 difference in the off-diagonal dual
elements. (The dual value of the `(i, j)` element in the triangle formulation
should be divided by 2 when spread across the `(i, j)` and `(j, i)` elements in
the square matrix formulation.) If the constraint has this dual inconsistency,
set `needs_adjoint_dual = true`.
"""
struct SymmetricMatrixShape <: AbstractShape
side_dimension::Int
needs_adjoint_dual::Bool

function SymmetricMatrixShape(
side_dimension::Int;
needs_adjoint_dual::Bool = false,
)
return new(side_dimension, needs_adjoint_dual)
end
end

function dual_shape(s::SymmetricMatrixShape)
if s.needs_adjoint_dual
return SymmetricMatrixAdjointShape(s.side_dimension)
end
return s
end

function reshape_vector(
Expand All @@ -174,6 +209,39 @@ function reshape_set(
return PSDCone()
end

"""
SymmetricMatrixAdjointShape(side_dimension)
The [`dual_shape`](@ref) of [`SymmetricMatrixShape`](@ref).
This shape is not intended for regular use.
"""
struct SymmetricMatrixAdjointShape <: AbstractShape
side_dimension::Int
end

function vectorize(matrix::AbstractMatrix, s::SymmetricMatrixAdjointShape)
n = LinearAlgebra.checksquare(matrix)
return [((i == j) ? 1 : 2) * matrix[i, j] for j in 1:n for i in 1:j]
end

function reshape_vector(
v::Vector{T},
shape::SymmetricMatrixAdjointShape,
) where {T}
matrix = Matrix{T}(undef, shape.side_dimension, shape.side_dimension)
k = 0
for j in 1:shape.side_dimension
for i in 1:j-1
k += 1
matrix[j, i] = matrix[i, j] = 0.5 * v[k]
end
k += 1
matrix[j, j] = v[k]
end
return LinearAlgebra.Symmetric(matrix)
end

"""
triangle_vec(matrix::Matrix)
Expand Down Expand Up @@ -432,14 +500,49 @@ parametrize a Hermitian matrix.
struct HermitianPSDCone end

"""
HermitianMatrixShape
HermitianMatrixShape(
side_dimension::Int;
needs_adjoint_dual::Bool = false,
)
The shape object for a Hermitian square matrix of `side_dimension` rows and
columns.
Shape object for a Hermitian square matrix of `side_dimension` rows and
columns. The vectorized form corresponds to
The vectorized form corresponds to
[`MOI.HermitianPositiveSemidefiniteConeTriangle`](@ref).
## `needs_adjoint_dual`
By default, the [`dual_shape`](@ref) of [`HermitianMatrixShape`](@ref) is also
[`HermitianMatrixShape`](@ref). This is true for cases such as a
`LinearAlgebra.Hermitian` matrix in [`HermitianPSDCone`](@ref).
However, JuMP also supports `LinearAlgebra.Hermitian` matrix in `Zeros`, which
is interpreted as an element-wise equality constraint. By exploiting symmetry,
we pass only the upper triangle of the equality constraints. This works for the
primal, but it leads to a factor of 2 difference in the off-diagonal dual
elements. (The dual value of the `(i, j)` element in the triangle formulation
should be divided by 2 when spread across the `(i, j)` and `(j, i)` elements in
the square matrix formulation.) If the constraint has this dual inconsistency,
set `needs_adjoint_dual = true`.
"""
struct HermitianMatrixShape <: AbstractShape
side_dimension::Int
needs_adjoint_dual::Bool

function HermitianMatrixShape(
side_dimension::Int;
needs_adjoint_dual::Bool = false,
)
return new(side_dimension, needs_adjoint_dual)
end
end

function dual_shape(s::HermitianMatrixShape)
if s.needs_adjoint_dual
return HermitianMatrixAdjointShape(s.side_dimension)
end
return s
end

function vectorize(matrix, ::HermitianMatrixShape)
Expand Down Expand Up @@ -479,6 +582,49 @@ function reshape_vector(v::Vector{T}, shape::HermitianMatrixShape) where {T}
return LinearAlgebra.Hermitian(matrix)
end

"""
HermitianMatrixAdjointShape(side_dimension)
The [`dual_shape`](@ref) of [`HermitianMatrixShape`](@ref).
This shape is not intended for regular use.
"""
struct HermitianMatrixAdjointShape <: AbstractShape
side_dimension::Int
end

function vectorize(matrix, ::HermitianMatrixAdjointShape)
n = LinearAlgebra.checksquare(matrix)
real_shape = SymmetricMatrixAdjointShape(n)
imag_shape = SymmetricMatrixShape(n - 1)
return vcat(
vectorize(_real.(matrix), real_shape),
vectorize(2 * _imag.(matrix[1:(end-1), 2:end]), imag_shape),
)
end

function reshape_vector(
v::Vector{T},
shape::HermitianMatrixAdjointShape,
) where {T}
NewType = _MA.promote_operation(_MA.add_mul, T, Complex{Bool}, T)
n = shape.side_dimension
matrix = Matrix{NewType}(undef, n, n)
real_k = 0
imag_k = MOI.dimension(MOI.PositiveSemidefiniteConeTriangle(n))
for j in 1:n
for i in 1:(j-1)
real_k += 1
imag_k += 1
matrix[i, j] = (v[real_k] + im * v[imag_k]) / 2
matrix[j, i] = (v[real_k] - im * v[imag_k]) / 2
end
real_k += 1
matrix[j, j] = v[real_k]
end
return LinearAlgebra.Hermitian(matrix)
end

function _vectorize_complex_variables(error_fn::Function, matrix::Matrix)
if any(_is_binary, matrix) || any(_is_integer, matrix)
# We would then need to fix the imaginary value to zero. Let's wait to
Expand Down Expand Up @@ -552,7 +698,7 @@ function build_constraint(
::Zeros,
)
n = LinearAlgebra.checksquare(H)
shape = HermitianMatrixShape(n)
shape = HermitianMatrixShape(n; needs_adjoint_dual = true)
x = vectorize(H, shape)
return VectorConstraint(x, MOI.Zeros(length(x)), shape)
end
Expand All @@ -565,7 +711,7 @@ function build_constraint(
::Zeros,
)
n = LinearAlgebra.checksquare(f)
shape = SymmetricMatrixShape(n)
shape = SymmetricMatrixShape(n; needs_adjoint_dual = true)
x = vectorize(f, shape)
return VectorConstraint(x, MOI.Zeros(length(x)), shape)
end
Expand Down
4 changes: 2 additions & 2 deletions src/variables.jl
Original file line number Diff line number Diff line change
Expand Up @@ -2304,10 +2304,10 @@ function _imag(s::String)
end

_real(v::ScalarVariable) = _mapinfo(real, v)
_real(scalar::AbstractJuMPScalar) = real(scalar)
_real(scalar) = real(scalar)

_imag(v::ScalarVariable) = _mapinfo(imag, v)
_imag(scalar::AbstractJuMPScalar) = imag(scalar)
_imag(scalar) = imag(scalar)

_conj(v::ScalarVariable) = _mapinfo(conj, v)

Expand Down
11 changes: 11 additions & 0 deletions test/test_constraint.jl
Original file line number Diff line number Diff line change
Expand Up @@ -1635,6 +1635,12 @@ function test_hermitian_in_zeros()
model = Model()
@variable(model, H[1:2, 1:2] in HermitianPSDCone())
c = @constraint(model, H == LinearAlgebra.I)
@test c.shape == HermitianMatrixShape(2; needs_adjoint_dual = true)
set_dual_start_value(c, [1 2+1im; 2-1im 3])
@test dual_start_value(c) ==
LinearAlgebra.Hermitian([1.0 2.0+1.0im; 2.0-1.0im 3.0])
@test MOI.get(backend(model), MOI.ConstraintDualStart(), index(c)) ==
[1.0, 4.0, 3.0, 2.0]
con = constraint_object(c)
@test isequal_canonical(con.func[1], real(H[1, 1]) - 1)
@test isequal_canonical(con.func[2], real(H[1, 2]))
Expand All @@ -1650,6 +1656,11 @@ function test_symmetric_in_zeros()
model = Model()
@variable(model, H[1:2, 1:2], Symmetric)
c = @constraint(model, H == LinearAlgebra.I)
@test c.shape == SymmetricMatrixShape(2; needs_adjoint_dual = true)
set_dual_start_value(c, [1 2; 2 3])
@test dual_start_value(c) == LinearAlgebra.Symmetric([1.0 2.0; 2.0 3.0])
@test MOI.get(backend(model), MOI.ConstraintDualStart(), index(c)) ==
[1.0, 4.0, 3.0]
con = constraint_object(c)
@test isequal_canonical(con.func[1], H[1, 1] - 1)
@test isequal_canonical(con.func[2], H[1, 2] - 0)
Expand Down

0 comments on commit 39b99bc

Please sign in to comment.