Skip to content

Commit

Permalink
[docs] improve docstrings in objective.jl (#3708)
Browse files Browse the repository at this point in the history
  • Loading branch information
odow authored Mar 13, 2024
1 parent a16b383 commit 24c0409
Showing 1 changed file with 187 additions and 16 deletions.
203 changes: 187 additions & 16 deletions src/objective.jl
Original file line number Diff line number Diff line change
Expand Up @@ -7,14 +7,35 @@
# An algebraic modeling language for Julia
# See https://github.com/jump-dev/JuMP.jl
#############################################################################
# This file contains objective-related functions

"""
relative_gap(model::GenericModel)
Return the final relative optimality gap after a call to `optimize!(model)`.
Exact value depends upon implementation of MathOptInterface.RelativeGap()
by the particular solver used for optimization.
Exact value depends upon implementation of [`MOI.RelativeGap`](@ref) by the
particular solver used for optimization.
This function is equivalent to querying the [`MOI.RelativeGap`](@ref) attribute.
## Example
```jldoctest
julia> import HiGHS
julia> model = Model(HiGHS.Optimizer);
julia> set_silent(model)
julia> @variable(model, x >= 1, Int);
julia> @objective(model, Min, 2 * x + 1);
julia> optimize!(model)
julia> relative_gap(model)
0.0
```
"""
function relative_gap(model::GenericModel{T})::T where {T}
return MOI.get(model, MOI.RelativeGap())
Expand All @@ -31,6 +52,27 @@ vector-valued objectives, it returns a `Vector{Float64}`.
In the case of a vector-valued objective, this returns the _ideal point_, that
is, the point obtained if each objective was optimized independently.
This function is equivalent to querying the [`MOI.ObjectiveBound`](@ref) attribute.
## Example
```jldoctest
julia> import HiGHS
julia> model = Model(HiGHS.Optimizer);
julia> set_silent(model)
julia> @variable(model, x >= 1, Int);
julia> @objective(model, Min, 2 * x + 1);
julia> optimize!(model)
julia> objective_bound(model)
3.0
```
"""
function objective_bound(model::GenericModel{T})::Union{T,Vector{T}} where {T}
return MOI.get(model, MOI.ObjectiveBound())
Expand All @@ -45,7 +87,33 @@ most-recent solution returned by the solver.
For scalar-valued objectives, this function returns a `Float64`. For
vector-valued objectives, it returns a `Vector{Float64}`.
This function is equivalent to querying the [`MOI.ObjectiveValue`](@ref) attribute.
See also: [`result_count`](@ref).
## Example
```jldoctest
julia> import HiGHS
julia> model = Model(HiGHS.Optimizer);
julia> set_silent(model)
julia> @variable(model, x >= 1);
julia> @objective(model, Min, 2 * x + 1);
julia> optimize!(model)
julia> objective_value(model)
3.0
julia> objective_value(model; result = 2)
ERROR: Result index of attribute MathOptInterface.ObjectiveValue(2) out of bounds. There are currently 1 solution(s) in the model.
Stacktrace:
[...]
```
"""
function objective_value(
model::GenericModel{T};
Expand All @@ -63,7 +131,34 @@ index `result` of the most-recent solution returned by the solver.
Throws `MOI.UnsupportedAttribute{MOI.DualObjectiveValue}` if the solver does
not support this attribute.
This function is equivalent to querying the [`MOI.DualObjectiveValue`](@ref)
attribute.
See also: [`result_count`](@ref).
## Example
```jldoctest
julia> import HiGHS
julia> model = Model(HiGHS.Optimizer);
julia> set_silent(model)
julia> @variable(model, x >= 1);
julia> @objective(model, Min, 2 * x + 1);
julia> optimize!(model)
julia> dual_objective_value(model)
3.0
julia> dual_objective_value(model; result = 2)
ERROR: Result index of attribute MathOptInterface.DualObjectiveValue(2) out of bounds. There are currently 1 solution(s) in the model.
Stacktrace:
[...]
```
"""
function dual_objective_value(
model::GenericModel{T};
Expand All @@ -76,6 +171,25 @@ end
objective_sense(model::GenericModel)::MOI.OptimizationSense
Return the objective sense.
This function is equivalent to querying the [`MOI.ObjectiveSense`](@ref) attribute.
## Example
```jldoctest
julia> model = Model();
julia> objective_sense(model)
FEASIBILITY_SENSE::OptimizationSense = 2
julia> @variable(model, x);
julia> @objective(model, Max, x)
x
julia> objective_sense(model)
MAX_SENSE::OptimizationSense = 1
```
"""
function objective_sense(model::GenericModel)
return MOI.get(model, MOI.ObjectiveSense())::MOI.OptimizationSense
Expand All @@ -84,10 +198,26 @@ end
"""
set_objective_sense(model::GenericModel, sense::MOI.OptimizationSense)
Sets the objective sense of the model to the given sense. See
[`set_objective_function`](@ref) to set the objective function. These are
low-level functions; the recommended way to set the objective is with the
[`@objective`](@ref) macro.
Sets the objective sense of the model to the given sense.
See [`set_objective_function`](@ref) to set the objective function.
These are low-level functions; the recommended way to set the objective is with
the [`@objective`](@ref) macro.
## Example
```jldoctest
julia> model = Model();
julia> objective_sense(model)
FEASIBILITY_SENSE::OptimizationSense = 2
julia> set_objective_sense(model, MOI.MAX_SENSE)
julia> objective_sense(model)
MAX_SENSE::OptimizationSense = 1
```
"""
function set_objective_sense(model::GenericModel, sense::MOI.OptimizationSense)
return MOI.set(model, MOI.ObjectiveSense(), sense)
Expand All @@ -99,10 +229,30 @@ end
set_objective_function(model::GenericModel, func::Real)
set_objective_function(model::GenericModel, func::Vector{<:AbstractJuMPScalar})
Sets the objective function of the model to the given function. See
[`set_objective_sense`](@ref) to set the objective sense. These are low-level
functions; the recommended way to set the objective is with the
[`@objective`](@ref) macro.
Sets the objective function of the model to the given function.
See [`set_objective_sense`](@ref) to set the objective sense.
These are low-level functions; the recommended way to set the objective is with
the [`@objective`](@ref) macro.
## Example
```jldoctest
julia> model = Model();
julia> @variable(model, x);
julia> @objective(model, Min, x);
julia> objective_function(model)
x
julia> set_objective_function(model, 2 * x + 1)
julia> objective_function(model)
2 x + 1
```
"""
function set_objective_function end

Expand Down Expand Up @@ -180,6 +330,22 @@ end
objective_function_type(model::GenericModel)::AbstractJuMPScalar
Return the type of the objective function.
This function is equivalent to querying the [`MOI.ObjectiveFunctionType`](@ref)
attribute.
## Example
```jldoctest
julia> model = Model();
julia> @variable(model, x);
julia> @objective(model, Min, 2 * x + 1);
julia> objective_function_type(model)
AffExpr (alias for GenericAffExpr{Float64, GenericVariableRef{Float64}})
```
"""
function objective_function_type(model::GenericModel)
return jump_function_type(
Expand All @@ -191,12 +357,15 @@ end
"""
objective_function(
model::GenericModel,
T::Type = objective_function_type(model),
)
::Type{F} = objective_function_type(model),
) where {F}
Return an object of type `T` representing the objective function.
Return an object of type `F` representing the objective function.
Error if the objective is not convertible to type `T`.
Errors if the objective is not convertible to type `F`.
This function is equivalent to querying the [`MOI.ObjectiveFunction{F}`](@ref)
attribute.
## Example
Expand All @@ -218,11 +387,13 @@ julia> objective_function(model, QuadExpr)
julia> typeof(objective_function(model, QuadExpr))
QuadExpr (alias for GenericQuadExpr{Float64, GenericVariableRef{Float64}})
```
We see with the last two commands that even if the objective function is affine,
as it is convertible to a quadratic function, it can be queried as a quadratic
function and the result is quadratic.
However, it is not convertible to a variable.
However, it is not convertible to a variable:
```jldoctest objective_function; filter = r"MathOptInterface\\."s
julia> objective_function(model, VariableRef)
ERROR: InexactError: convert(MathOptInterface.VariableIndex, 1.0 + 2.0 MOI.VariableIndex(1))
Expand Down

0 comments on commit 24c0409

Please sign in to comment.