Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

tests and examples for the complex relative entropy cone #831

Merged
merged 23 commits into from
Feb 16, 2024
Merged
Show file tree
Hide file tree
Changes from 16 commits
Commits
Show all changes
23 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
59 changes: 35 additions & 24 deletions examples/entanglementassisted/JuMP.jl
Original file line number Diff line number Diff line change
Expand Up @@ -19,8 +19,8 @@ struct EntanglementAssisted{T <: Real} <: ExampleInstanceJuMP{T}
ne::Int
end

function build(inst::EntanglementAssisted{T}) where {T <: Float64}
gamma = 0.2
function build(inst::EntanglementAssisted{T}) where {T <: Real}
gamma = T(1) / 5
ampl_damp = [
1 0
0 sqrt(gamma)
Expand All @@ -33,46 +33,57 @@ function build(inst::EntanglementAssisted{T}) where {T <: Float64}
ne = inst.ne
@assert nb * ne == ampl_dim
rt2 = sqrt(T(2))
sa = Cones.svec_length(ampl_dim)
sb = Cones.svec_length(nb)
sbe = Cones.svec_length(Complex, ampl_dim)
sb = Cones.svec_length(Complex, nb)

model = JuMP.Model()
model = JuMP.GenericModel{T}()
JuMP.@variables(model, begin
ρ[1:na, 1:na], PSD
cond_epi
qe_epi
ρA[1:na, 1:na], Hermitian
conditional
von_neumann
end)

Q1 = Symmetric(ampl_damp * ρ * ampl_damp')
Q2 = zeros(JuMP.AffExpr, nb * ne, nb * ne)
kron!(Q2, I(nb), partial_trace(Q1, 1, [nb, ne]))
Q3 = partial_trace(Q1, 2, [nb, ne])
Q1_vec = Cones.smat_to_svec!(zeros(JuMP.AffExpr, sa), Q1, rt2)
Q2_vec = Cones.smat_to_svec!(zeros(JuMP.AffExpr, sa), Q2, rt2)
Q3_vec = Cones.smat_to_svec!(zeros(JuMP.AffExpr, sb), Q3, rt2)
RE_cone = Hypatia.EpiTrRelEntropyTriCone{T}(1 + 2 * sa)
E_cone =
Hypatia.EpiPerSepSpectralCone{T}(Cones.NegEntropySSF(), Cones.MatrixCSqr{T, T}, nb)
ρBE = Hermitian(ampl_damp * ρA * ampl_damp')
IρE = Matrix{JuMP.GenericAffExpr{Complex{T}, JuMP.GenericVariableRef{T}}}(
undef,
nb * ne,
nb * ne,
)
kron!(IρE, I(nb), partial_trace(ρBE, 1, [nb, ne]))
ρB = partial_trace(ρBE, 2, [nb, ne])

ρBE_vec = Vector{JuMP.GenericAffExpr{T, JuMP.GenericVariableRef{T}}}(undef, sbe)
IρE_vec = Vector{JuMP.GenericAffExpr{T, JuMP.GenericVariableRef{T}}}(undef, sbe)
ρB_vec = Vector{JuMP.GenericAffExpr{T, JuMP.GenericVariableRef{T}}}(undef, sb)

Cones._smat_to_svec_complex!(ρBE_vec, ρBE, rt2)
Cones._smat_to_svec_complex!(IρE_vec, IρE, rt2)
Cones._smat_to_svec_complex!(ρB_vec, ρB, rt2)
RE_cone = Hypatia.EpiTrRelEntropyTriCone{T, Complex{T}}(1 + 2 * sbe)
E_cone = Hypatia.EpiPerSepSpectralCone{T}(
Cones.NegEntropySSF(),
Cones.MatrixCSqr{T, Complex{T}},
nb,
)
JuMP.@constraints(model, begin
tr(ρ) == 1
vcat(cond_epi, Q1_vec, Q2_vec) in RE_cone
vcat(qe_epi, 1, Q3_vec) in E_cone
tr(ρA) == 1
vcat(conditional, IρE_vec, ρBE_vec) in RE_cone
vcat(von_neumann, 1, ρB_vec) in E_cone
end)

JuMP.@objective(model, Max, (cond_epi + qe_epi) / -log(T(2)))
JuMP.@objective(model, Max, (conditional + von_neumann) / -log(T(2)))

return model
end

# partial trace of Q over system i given subsystem dimensions subs
function partial_trace(Q::Symmetric, i::Int, subs::Vector{Int})
function partial_trace(Q::AbstractMatrix, i::Int, subs::Vector{Int})
@assert 1 <= i <= length(subs)
@assert size(Q, 1) == prod(subs)
return sum(partial_trace_j(j, Q, i, subs) for j in 1:subs[i])
end

function partial_trace_j(j::Int, Q::Symmetric, i::Int, subs::Vector{Int})
function partial_trace_j(j::Int, Q::AbstractMatrix, i::Int, subs::Vector{Int})
X1 = sparse(I, 1, 1)
X2 = copy(X1)
for (k, dim) in enumerate(subs)
Expand Down
10 changes: 5 additions & 5 deletions examples/nearestcorrelation/JuMP.jl
Original file line number Diff line number Diff line change
Expand Up @@ -14,25 +14,25 @@ struct NearestCorrelationJuMP{T <: Real} <: ExampleInstanceJuMP{T}
side::Int
end

function build(inst::NearestCorrelationJuMP{T}) where {T <: Float64}
function build(inst::NearestCorrelationJuMP{T}) where {T <: Real}
side = inst.side
M = randn(T, side, side)
M = M * M'
vec_dim = Cones.svec_length(side)
m_vec = zeros(T, vec_dim)
m_vec = Vector{T}(undef, vec_dim)
Cones.smat_to_svec!(m_vec, M, sqrt(T(2)))

model = JuMP.Model()
model = JuMP.GenericModel{T}()
JuMP.@variable(model, x_vec[1:vec_dim])
X = zeros(JuMP.AffExpr, side, side)
X = Matrix{JuMP.GenericAffExpr{T, JuMP.GenericVariableRef{T}}}(undef, side, side)
Cones.svec_to_smat!(X, one(T) * x_vec, sqrt(T(2)))
JuMP.@constraint(model, diag(X) .== 1)

JuMP.@variable(model, y)
JuMP.@objective(model, Min, y)
JuMP.@constraint(
model,
vcat(y, x_vec, m_vec) in Hypatia.EpiTrRelEntropyTriCone{T}(1 + 2 * vec_dim)
vcat(y, x_vec, m_vec) in Hypatia.EpiTrRelEntropyTriCone{T, T}(1 + 2 * vec_dim)
)

return model
Expand Down
29 changes: 17 additions & 12 deletions examples/relentrentanglement/JuMP.jl
Original file line number Diff line number Diff line change
Expand Up @@ -16,36 +16,41 @@ struct RelEntrEntanglementJuMP{T <: Real} <: ExampleInstanceJuMP{T}
nb::Int
end

function build(inst::RelEntrEntanglementJuMP{T}) where {T <: Float64}
function build(inst::RelEntrEntanglementJuMP{T}) where {T <: Real}
(na, nb) = (inst.na, inst.nb)
side = na * nb
Rho = randn(T, side, side)
Rho = randn(Complex{T}, side, side)
Rho = Rho * Rho'
Rho = Symmetric(Rho / tr(Rho))
vec_dim = Cones.svec_length(side)
rho_vec = zeros(T, vec_dim)
Rho = Hermitian(Rho / tr(Rho))
vec_dim = Cones.svec_length(Complex, side)
rho_vec = Vector{T}(undef, vec_dim)
Cones.smat_to_svec!(rho_vec, Rho, sqrt(T(2)))

model = JuMP.Model()
model = JuMP.GenericModel{T}()
JuMP.@variable(model, tau_vec[1:vec_dim])
Tau = zeros(JuMP.AffExpr, side, side)
Cones.svec_to_smat!(Tau, one(T) * tau_vec, sqrt(T(2)))
Tau = Matrix{JuMP.GenericAffExpr{Complex{T}, JuMP.GenericVariableRef{T}}}(
undef,
side,
side,
)
Cones._svec_to_smat_complex!(Tau, one(T) * tau_vec, sqrt(T(2)))
JuMP.@constraint(model, tr(Tau) == 1)

JuMP.@variable(model, y)
JuMP.@objective(model, Min, y / log(T(2)))
JuMP.@constraint(
model,
vcat(y, tau_vec, rho_vec) in Hypatia.EpiTrRelEntropyTriCone{T}(1 + 2 * vec_dim)
vcat(y, tau_vec, rho_vec) in
Hypatia.EpiTrRelEntropyTriCone{T, Complex{T}}(1 + 2 * vec_dim)
)
pt = partial_transpose(Symmetric(Tau), 2, [na, nb])
JuMP.@constraint(model, Symmetric(pt) in JuMP.PSDCone())
pt = partial_transpose(Hermitian(Tau), 2, [na, nb])
JuMP.@constraint(model, Hermitian(pt) in JuMP.HermitianPSDCone())

return model
end

# partial transpose of Q over system i given subsystem dimensions subs
function partial_transpose(Q::Symmetric, i::Int, subs::Vector{Int})
function partial_transpose(Q::AbstractMatrix, i::Int, subs::Vector{Int})
@assert 1 <= i <= length(subs)
@assert size(Q, 1) == prod(subs)
n = length(subs)
Expand Down
13 changes: 9 additions & 4 deletions src/Cones/arrayutilities.jl
Original file line number Diff line number Diff line change
Expand Up @@ -202,11 +202,13 @@ $(SIGNATURES)
Copy a complex Hermitian matrix upper triangle to a svec-scaled real vector
in-place.
"""
function smat_to_svec!(
smat_to_svec!(
vec::AbstractVector{T},
mat::AbstractMatrix{Complex{T}},
rt2::Real,
) where {T}
) where {T} = _smat_to_svec_complex!(vec, mat, rt2)

function _smat_to_svec_complex!(vec, mat, rt2)
k = 1
m = size(mat, 1)
@assert m == size(mat, 2)
Expand Down Expand Up @@ -258,6 +260,10 @@ function svec_to_smat!(
vec::AbstractVector{T},
rt2::Real,
) where {T}
return _svec_to_smat_complex!(mat, vec, rt2)
end

function _svec_to_smat_complex!(mat, vec, rt2)
k = 1
m = size(mat, 1)
@assert m == size(mat, 2)
Expand All @@ -266,7 +272,7 @@ function svec_to_smat!(
mat[i, j] = vec[k]
k += 1
else
mat[i, j] = Complex(vec[k], -vec[k + 1]) / rt2
mat[i, j] = (vec[k] - im * vec[k + 1]) / rt2
k += 2
end
end
Expand Down Expand Up @@ -375,7 +381,6 @@ function eig_dot_kron!(
) where {T <: Real, R <: RealOrComplex{T}}
@assert issymmetric(inner) # must be symmetric (wrapper is less efficient)
rt2i = inv(rt2)
d = size(inner, 1)
copyto!(V, vecs') # allows fast column slices
V_views = [view(V, :, i) for i in 1:size(inner, 1)]
scals = (R <: Complex{T} ? [rt2i, rt2i * im] : [rt2i]) # real and imag parts
Expand Down
1 change: 0 additions & 1 deletion src/Cones/epipersepspectral/matrixcsqr.jl
Original file line number Diff line number Diff line change
Expand Up @@ -492,7 +492,6 @@ function dder3(cone::EpiPerSepSpectral{<:MatrixCSqr{T}}, dir::AbstractVector{T})
w_λi = cache.w_λi
σ = cache.σ
∇h = cache.∇h
∇2h = cache.∇2h
Δ2h = cache.Δ2h
r_X = cache.w1
ξ_X = cache.w2
Expand Down
6 changes: 5 additions & 1 deletion src/Cones/epirelentropy.jl
Original file line number Diff line number Diff line change
Expand Up @@ -397,10 +397,14 @@ function get_central_ray_epirelentropy(w_dim::Int)
u = 1.2023 / rtw_dim - 0.015
v = 0.432 / rtw_dim + 1.0125
w = -0.3057 / rtw_dim + 0.972
else
elseif w_dim <= 60
u = 1.1513 / rtw_dim - 0.0069
v = 0.4873 / rtw_dim + 1.0008
w = -0.4247 / rtw_dim + 0.9961
else # use asymptotic expansion for the highest dimensions
u = 1 / rtw_dim + 0.75 / w_dim
v = 1 + 0.5 / rtw_dim
w = 1 - 0.5 / rtw_dim + 0.25 / w_dim
end
return [u, v, w]
end
Expand Down
Loading
Loading