Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Use HiGHS to compute the dual objective value #226

Merged
merged 5 commits into from
Sep 20, 2024
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
72 changes: 71 additions & 1 deletion src/MOI_wrapper.jl
Original file line number Diff line number Diff line change
Expand Up @@ -2029,7 +2029,77 @@ end

function MOI.get(model::Optimizer, attr::MOI.DualObjectiveValue)
MOI.check_result_index_bounds(model, attr)
return MOI.Utilities.get_fallback(model, attr, Float64)
if model.solution.has_dual_ray
return MOI.Utilities.get_fallback(model, attr, Float64)
elseif model.solution.dual_solution_status == kHighsSolutionStatusNone
# For MIPs, we cannot compute a dual objective value
return NaN
end
offset = Ref{Cdouble}()
ret = Highs_getObjectiveOffset(model, offset)
_check_ret(ret)
dual_objective_value = offset[]
# Column components of the dual objective value
set = Cint[
i - 1 for (i, d) in enumerate(model.solution.coldual) if !iszero(d)
]
n = length(set)
lower, upper = zeros(n), zeros(n)
ret = Highs_getColsBySet(
model,
n,
set,
Ref{Cint}(), # num_col
C_NULL,
lower,
upper,
Ref{Cint}(), # num_nnz
C_NULL, # matrix_start,
C_NULL, # matrix_index,
C_NULL, # matrix_value,
)
_check_ret(ret)
for (li, i, ui) in zip(lower, set, upper)
xi, di = model.solution.colvalue[i+1], model.solution.coldual[i+1]
dual_objective_value += _dual_objective_contribution(li, xi, ui, di)
end
# Row components of the dual objective value
set = Cint[
i - 1 for (i, d) in enumerate(model.solution.rowdual) if !iszero(d)
]
n = length(set)
resize!(lower, n)
resize!(upper, n)
ret = Highs_getRowsBySet(
model,
n,
set,
Ref{Cint}(), # num_row
lower,
upper,
Ref{Cint}(), # num_nnz
C_NULL, # matrix_start,
C_NULL, # matrix_index,
C_NULL, # matrix_value,
)
_check_ret(ret)
for (li, i, ui) in zip(lower, set, upper)
ri, di = model.solution.rowvalue[i+1], model.solution.rowdual[i+1]
dual_objective_value += _dual_objective_contribution(li, ri, ui, di)
end
return dual_objective_value
end

function _dual_objective_contribution(l, x, u, d)
if isfinite(l) && isfinite(u)
# Pick the bound that is closest to the primal value
return ifelse(abs(x - l) < abs(x - u), l, u) * d
elseif isfinite(l)
return l * d
else
@assert isfinite(u)
return u * d
end
end

function MOI.get(model::Optimizer, ::MOI.ObjectiveBound)
Expand Down
10 changes: 10 additions & 0 deletions test/MOI_wrapper.jl
Original file line number Diff line number Diff line change
Expand Up @@ -921,6 +921,16 @@ function test_infeasible_point()
return
end

function test_DualObjectiveValue_int()
model = HiGHS.Optimizer()
MOI.set(model, MOI.Silent(), true)
x, _ = MOI.add_constrained_variable(model, MOI.ZeroOne())
MOI.optimize!(model)
@test isnan(MOI.get(model, MOI.DualObjectiveValue()))
return
end

odow marked this conversation as resolved.
Show resolved Hide resolved

end # module

TestMOIHighs.runtests()
Loading