Skip to content

Official PyTorch Implementation of Dynamic Hyperpixel Flow, ECCV 2020

License

Notifications You must be signed in to change notification settings

juhongm999/dhpf

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PWC PWC PWC

Learning to Compose Hypercolumns for Visual Correspondence

This is the implementation of the paper "Learning to Compose Hypercolumns for Visual Correspondence" by J. Min, J. Lee, J. Ponce and M. Cho. Implemented on Python 3.7 and PyTorch 1.0.1.

For more information, check out project [website] and the paper on [arXiv].

Requirements

  • Python 3.7
  • PyTorch 1.0.1
  • tensorboard
  • scipy
  • pandas
  • requests
  • scikit-image

Conda environment settings:

conda create -n dhpf python=3.7
conda activate dhpf

conda install pytorch=1.0.1 torchvision cudatoolkit=10.0 -c pytorch
pip install tensorboardX
conda install -c anaconda scipy
conda install -c anaconda pandas
conda install -c anaconda requests
conda install -c anaconda scikit-image
conda install -c anaconda "pillow<7"

Training

Training DHPF with strong supervision (keypoint annotations) on PF-PASCAL and SPair-71k
(reproducing strongly-supervised results in Tab. 1 and 2):

python train.py --supervision strong \
                --lr 0.03 \
                --bsz 8 \
                --niter 100 \
                --selection 0.5 \ 
                --benchmark pfpascal \ 
                --backbone {resnet50, resnet101}

python train.py --supervision strong \
                --lr 0.03 \
                --bsz 8 \
                --niter 5 \
                --selection 0.5 \ 
                --benchmark spair \ 
                --backbone {resnet50, resnet101}

Training DHPF with weak supervision (image-level labels) on PF-PASCAL
(reproducing weak-supervised results in Tab. 1):

python train.py --supervision weak \
                --lr 0.1 \
                --bsz 4 \
                --niter 30 \
                --selection 0.5 \  
                --benchmark pfpascal \
                --backbone {resnet50, resnet101}

Testing

We provide trained models available on [Google drive].

PCK @ αimg=0.1 on PF-PASCAL at different μ:

Trained models
at differnt μ
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
weak (res50) 77.3 79 79 79.3 79.6 80.7 81.1 80.7
weak (res101) 80.3 81.2 82.1 80.1 81.7 80.9 81.3 81.3
strong (res50) 87.7 89.1 88.9 88.5 89.4 89.1 89 89.5
strong (res101) 88.7 90 90.7 90.2 90.1 90.6 90.6 90.4

PCK @ αimg=0.1 on SPair-71k at μ=0.5:

Trained models
at μ=0.5
PCK
weak (res101) 27.7
strong (res101) 37.3

Reproducing results in Tab. 1, 2 and 3:

python test.py --backbone {resnet50, resnet101} \
               --benchmark {pfpascal, pfwillow, caltech, spair} \
               --load "path_to_trained_model"

BibTeX

If you use this code for your research, please consider citing:

@InProceedings{min2020dhpf, 
   title={Learning to Compose Hypercolumns for Visual Correspondence},
   author={Juhong Min and Jongmin Lee and Jean Ponce and Minsu Cho},
   booktitle={ECCV},
   year={2020}
}

About

Official PyTorch Implementation of Dynamic Hyperpixel Flow, ECCV 2020

Topics

Resources

License

Stars

Watchers

Forks

Languages