-
Notifications
You must be signed in to change notification settings - Fork 18
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Revert "update ed25519 code for mbedtls version"
This reverts commit 0f674bd.
- Loading branch information
Showing
12 changed files
with
1,332 additions
and
699 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,320 @@ | ||
/* Edwards curve operations | ||
* Daniel Beer <[email protected]>, 9 Jan 2014 | ||
* | ||
* This file is in the public domain. | ||
*/ | ||
|
||
#include "ed25519.h" | ||
|
||
/* Base point is (numbers wrapped): | ||
* | ||
* x = 151122213495354007725011514095885315114 | ||
* 54012693041857206046113283949847762202 | ||
* y = 463168356949264781694283940034751631413 | ||
* 07993866256225615783033603165251855960 | ||
* | ||
* y is derived by transforming the original Montgomery base (u=9). x | ||
* is the corresponding positive coordinate for the new curve equation. | ||
* t is x*y. | ||
*/ | ||
const struct ed25519_pt ed25519_base = { | ||
.x = { | ||
0x1a, 0xd5, 0x25, 0x8f, 0x60, 0x2d, 0x56, 0xc9, | ||
0xb2, 0xa7, 0x25, 0x95, 0x60, 0xc7, 0x2c, 0x69, | ||
0x5c, 0xdc, 0xd6, 0xfd, 0x31, 0xe2, 0xa4, 0xc0, | ||
0xfe, 0x53, 0x6e, 0xcd, 0xd3, 0x36, 0x69, 0x21 | ||
}, | ||
.y = { | ||
0x58, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, | ||
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, | ||
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, | ||
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66 | ||
}, | ||
.t = { | ||
0xa3, 0xdd, 0xb7, 0xa5, 0xb3, 0x8a, 0xde, 0x6d, | ||
0xf5, 0x52, 0x51, 0x77, 0x80, 0x9f, 0xf0, 0x20, | ||
0x7d, 0xe3, 0xab, 0x64, 0x8e, 0x4e, 0xea, 0x66, | ||
0x65, 0x76, 0x8b, 0xd7, 0x0f, 0x5f, 0x87, 0x67 | ||
}, | ||
.z = {1, 0} | ||
}; | ||
|
||
const struct ed25519_pt ed25519_neutral = { | ||
.x = {0}, | ||
.y = {1, 0}, | ||
.t = {0}, | ||
.z = {1, 0} | ||
}; | ||
|
||
/* Conversion to and from projective coordinates */ | ||
void ed25519_project(struct ed25519_pt *p, | ||
const uint8_t *x, const uint8_t *y) | ||
{ | ||
f25519_copy(p->x, x); | ||
f25519_copy(p->y, y); | ||
f25519_load(p->z, 1); | ||
f25519_mul__distinct(p->t, x, y); | ||
} | ||
|
||
void ed25519_unproject(uint8_t *x, uint8_t *y, | ||
const struct ed25519_pt *p) | ||
{ | ||
uint8_t z1[F25519_SIZE]; | ||
|
||
f25519_inv__distinct(z1, p->z); | ||
f25519_mul__distinct(x, p->x, z1); | ||
f25519_mul__distinct(y, p->y, z1); | ||
|
||
f25519_normalize(x); | ||
f25519_normalize(y); | ||
} | ||
|
||
/* Compress/uncompress points. We compress points by storing the x | ||
* coordinate and the parity of the y coordinate. | ||
* | ||
* Rearranging the curve equation, we obtain explicit formulae for the | ||
* coordinates: | ||
* | ||
* x = sqrt((y^2-1) / (1+dy^2)) | ||
* y = sqrt((x^2+1) / (1-dx^2)) | ||
* | ||
* Where d = (-121665/121666), or: | ||
* | ||
* d = 370957059346694393431380835087545651895 | ||
* 42113879843219016388785533085940283555 | ||
*/ | ||
|
||
static const uint8_t ed25519_d[F25519_SIZE] = { | ||
0xa3, 0x78, 0x59, 0x13, 0xca, 0x4d, 0xeb, 0x75, | ||
0xab, 0xd8, 0x41, 0x41, 0x4d, 0x0a, 0x70, 0x00, | ||
0x98, 0xe8, 0x79, 0x77, 0x79, 0x40, 0xc7, 0x8c, | ||
0x73, 0xfe, 0x6f, 0x2b, 0xee, 0x6c, 0x03, 0x52 | ||
}; | ||
|
||
void ed25519_pack(uint8_t *c, const uint8_t *x, const uint8_t *y) | ||
{ | ||
uint8_t tmp[F25519_SIZE]; | ||
uint8_t parity; | ||
|
||
f25519_copy(tmp, x); | ||
f25519_normalize(tmp); | ||
parity = (tmp[0] & 1) << 7; | ||
|
||
f25519_copy(c, y); | ||
f25519_normalize(c); | ||
c[31] |= parity; | ||
} | ||
|
||
uint8_t ed25519_try_unpack(uint8_t *x, uint8_t *y, const uint8_t *comp) | ||
{ | ||
const int parity = comp[31] >> 7; | ||
uint8_t a[F25519_SIZE]; | ||
uint8_t b[F25519_SIZE]; | ||
uint8_t c[F25519_SIZE]; | ||
|
||
/* Unpack y */ | ||
f25519_copy(y, comp); | ||
y[31] &= 127; | ||
|
||
/* Compute c = y^2 */ | ||
f25519_mul__distinct(c, y, y); | ||
|
||
/* Compute b = (1+dy^2)^-1 */ | ||
f25519_mul__distinct(b, c, ed25519_d); | ||
f25519_add(a, b, f25519_one); | ||
f25519_inv__distinct(b, a); | ||
|
||
/* Compute a = y^2-1 */ | ||
f25519_sub(a, c, f25519_one); | ||
|
||
/* Compute c = a*b = (y^2-1)/(1-dy^2) */ | ||
f25519_mul__distinct(c, a, b); | ||
|
||
/* Compute a, b = +/-sqrt(c), if c is square */ | ||
f25519_sqrt(a, c); | ||
f25519_neg(b, a); | ||
|
||
/* Select one of them, based on the compressed parity bit */ | ||
f25519_select(x, a, b, (a[0] ^ parity) & 1); | ||
|
||
/* Verify that x^2 = c */ | ||
f25519_mul__distinct(a, x, x); | ||
f25519_normalize(a); | ||
f25519_normalize(c); | ||
|
||
return f25519_eq(a, c); | ||
} | ||
|
||
/* k = 2d */ | ||
static const uint8_t ed25519_k[F25519_SIZE] = { | ||
0x59, 0xf1, 0xb2, 0x26, 0x94, 0x9b, 0xd6, 0xeb, | ||
0x56, 0xb1, 0x83, 0x82, 0x9a, 0x14, 0xe0, 0x00, | ||
0x30, 0xd1, 0xf3, 0xee, 0xf2, 0x80, 0x8e, 0x19, | ||
0xe7, 0xfc, 0xdf, 0x56, 0xdc, 0xd9, 0x06, 0x24 | ||
}; | ||
|
||
void ed25519_add(struct ed25519_pt *r, | ||
const struct ed25519_pt *p1, const struct ed25519_pt *p2) | ||
{ | ||
/* Explicit formulas database: add-2008-hwcd-3 | ||
* | ||
* source 2008 Hisil--Wong--Carter--Dawson, | ||
* http://eprint.iacr.org/2008/522, Section 3.1 | ||
* appliesto extended-1 | ||
* parameter k | ||
* assume k = 2 d | ||
* compute A = (Y1-X1)(Y2-X2) | ||
* compute B = (Y1+X1)(Y2+X2) | ||
* compute C = T1 k T2 | ||
* compute D = Z1 2 Z2 | ||
* compute E = B - A | ||
* compute F = D - C | ||
* compute G = D + C | ||
* compute H = B + A | ||
* compute X3 = E F | ||
* compute Y3 = G H | ||
* compute T3 = E H | ||
* compute Z3 = F G | ||
*/ | ||
uint8_t a[F25519_SIZE]; | ||
uint8_t b[F25519_SIZE]; | ||
uint8_t c[F25519_SIZE]; | ||
uint8_t d[F25519_SIZE]; | ||
uint8_t e[F25519_SIZE]; | ||
uint8_t f[F25519_SIZE]; | ||
uint8_t g[F25519_SIZE]; | ||
uint8_t h[F25519_SIZE]; | ||
|
||
/* A = (Y1-X1)(Y2-X2) */ | ||
f25519_sub(c, p1->y, p1->x); | ||
f25519_sub(d, p2->y, p2->x); | ||
f25519_mul__distinct(a, c, d); | ||
|
||
/* B = (Y1+X1)(Y2+X2) */ | ||
f25519_add(c, p1->y, p1->x); | ||
f25519_add(d, p2->y, p2->x); | ||
f25519_mul__distinct(b, c, d); | ||
|
||
/* C = T1 k T2 */ | ||
f25519_mul__distinct(d, p1->t, p2->t); | ||
f25519_mul__distinct(c, d, ed25519_k); | ||
|
||
/* D = Z1 2 Z2 */ | ||
f25519_mul__distinct(d, p1->z, p2->z); | ||
f25519_add(d, d, d); | ||
|
||
/* E = B - A */ | ||
f25519_sub(e, b, a); | ||
|
||
/* F = D - C */ | ||
f25519_sub(f, d, c); | ||
|
||
/* G = D + C */ | ||
f25519_add(g, d, c); | ||
|
||
/* H = B + A */ | ||
f25519_add(h, b, a); | ||
|
||
/* X3 = E F */ | ||
f25519_mul__distinct(r->x, e, f); | ||
|
||
/* Y3 = G H */ | ||
f25519_mul__distinct(r->y, g, h); | ||
|
||
/* T3 = E H */ | ||
f25519_mul__distinct(r->t, e, h); | ||
|
||
/* Z3 = F G */ | ||
f25519_mul__distinct(r->z, f, g); | ||
} | ||
|
||
void ed25519_double(struct ed25519_pt *r, const struct ed25519_pt *p) | ||
{ | ||
/* Explicit formulas database: dbl-2008-hwcd | ||
* | ||
* source 2008 Hisil--Wong--Carter--Dawson, | ||
* http://eprint.iacr.org/2008/522, Section 3.3 | ||
* compute A = X1^2 | ||
* compute B = Y1^2 | ||
* compute C = 2 Z1^2 | ||
* compute D = a A | ||
* compute E = (X1+Y1)^2-A-B | ||
* compute G = D + B | ||
* compute F = G - C | ||
* compute H = D - B | ||
* compute X3 = E F | ||
* compute Y3 = G H | ||
* compute T3 = E H | ||
* compute Z3 = F G | ||
*/ | ||
uint8_t a[F25519_SIZE]; | ||
uint8_t b[F25519_SIZE]; | ||
uint8_t c[F25519_SIZE]; | ||
uint8_t e[F25519_SIZE]; | ||
uint8_t f[F25519_SIZE]; | ||
uint8_t g[F25519_SIZE]; | ||
uint8_t h[F25519_SIZE]; | ||
|
||
/* A = X1^2 */ | ||
f25519_mul__distinct(a, p->x, p->x); | ||
|
||
/* B = Y1^2 */ | ||
f25519_mul__distinct(b, p->y, p->y); | ||
|
||
/* C = 2 Z1^2 */ | ||
f25519_mul__distinct(c, p->z, p->z); | ||
f25519_add(c, c, c); | ||
|
||
/* D = a A (alter sign) */ | ||
/* E = (X1+Y1)^2-A-B */ | ||
f25519_add(f, p->x, p->y); | ||
f25519_mul__distinct(e, f, f); | ||
f25519_sub(e, e, a); | ||
f25519_sub(e, e, b); | ||
|
||
/* G = D + B */ | ||
f25519_sub(g, b, a); | ||
|
||
/* F = G - C */ | ||
f25519_sub(f, g, c); | ||
|
||
/* H = D - B */ | ||
f25519_neg(h, b); | ||
f25519_sub(h, h, a); | ||
|
||
/* X3 = E F */ | ||
f25519_mul__distinct(r->x, e, f); | ||
|
||
/* Y3 = G H */ | ||
f25519_mul__distinct(r->y, g, h); | ||
|
||
/* T3 = E H */ | ||
f25519_mul__distinct(r->t, e, h); | ||
|
||
/* Z3 = F G */ | ||
f25519_mul__distinct(r->z, f, g); | ||
} | ||
|
||
void ed25519_smult(struct ed25519_pt *r_out, const struct ed25519_pt *p, | ||
const uint8_t *e) | ||
{ | ||
struct ed25519_pt r; | ||
int i; | ||
|
||
ed25519_copy(&r, &ed25519_neutral); | ||
|
||
for (i = 255; i >= 0; i--) { | ||
const uint8_t bit = (e[i >> 3] >> (i & 7)) & 1; | ||
struct ed25519_pt s; | ||
|
||
ed25519_double(&r, &r); | ||
ed25519_add(&s, &r, p); | ||
|
||
f25519_select(r.x, r.x, s.x, bit); | ||
f25519_select(r.y, r.y, s.y, bit); | ||
f25519_select(r.z, r.z, s.z, bit); | ||
f25519_select(r.t, r.t, s.t, bit); | ||
} | ||
|
||
ed25519_copy(r_out, &r); | ||
} |
Oops, something went wrong.
cb2ed3a
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
mbedtls version performance is bad, use c25519
c25519
pub: 523077 us
sig: 556077 us
mbedtls
pub: 472044us
sig: 944341 us