Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add resource_profile support #52

Merged
merged 8 commits into from
Jun 11, 2024
Merged
Show file tree
Hide file tree
Changes from 7 commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
50 changes: 44 additions & 6 deletions joblibspark/backend.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@
import warnings
from multiprocessing.pool import ThreadPool
import uuid
from typing import Optional
from packaging.version import Version, parse

from joblib.parallel \
Expand All @@ -40,10 +41,11 @@
from py4j.clientserver import ClientServer

import pyspark
from pyspark.sql import SparkSession
from pyspark import cloudpickle
from pyspark.util import VersionUtils

from .utils import create_resource_profile, get_spark_session


def register():
"""
Expand Down Expand Up @@ -71,15 +73,15 @@ class SparkDistributedBackend(ParallelBackendBase, AutoBatchingMixin):
by `SequentialBackend`
"""

def __init__(self, **backend_args):
def __init__(self,
num_cpus_per_spark_task: Optional[int] = None,
num_gpus_per_spark_task: Optional[int] = None,
**backend_args):
# pylint: disable=super-with-arguments
super(SparkDistributedBackend, self).__init__(**backend_args)
self._pool = None
self._n_jobs = None
self._spark = SparkSession \
.builder \
.appName("JoblibSparkBackend") \
.getOrCreate()
self._spark = get_spark_session()
self._spark_context = self._spark.sparkContext
self._job_group = "joblib-spark-job-group-" + str(uuid.uuid4())
self._spark_pinned_threads_enabled = isinstance(
Expand All @@ -96,6 +98,40 @@ def __init__(self, **backend_args):
except ImportError:
self._ipython = None

self._support_stage_scheduling = self._is_support_stage_scheduling()
self._resource_profile = self._create_resource_profile(num_cpus_per_spark_task,
num_gpus_per_spark_task)

def _is_support_stage_scheduling(self):
spark_master = self._spark_context.master
is_spark_local_mode = spark_master == "local" or spark_master.startswith("local[")
if is_spark_local_mode:
support_stage_scheduling = False
warnings.warn("Spark local mode doesn't support stage-level scheduling.")
else:
support_stage_scheduling = hasattr(
self._spark_context.parallelize([1]), "withResources"
)
warnings.warn("Spark version does not support stage-level scheduling.")
return support_stage_scheduling

def _create_resource_profile(self,
num_cpus_per_spark_task,
num_gpus_per_spark_task) -> Optional[object]:
resource_profile = None
if self._support_stage_scheduling:
self.using_stage_scheduling = True

default_cpus_per_task = int(self._spark.conf.get("spark.task.cpus", "1"))
default_gpus_per_task = int(self._spark.conf.get("spark.task.resource.gpu.amount", "0"))
num_cpus_per_spark_task = num_cpus_per_spark_task or default_cpus_per_task
num_gpus_per_spark_task = num_gpus_per_spark_task or default_gpus_per_task

resource_profile = create_resource_profile(num_cpus_per_spark_task,
num_gpus_per_spark_task)

return resource_profile

def _cancel_all_jobs(self):
self._is_running = False
if not self._spark_supports_job_cancelling:
Expand Down Expand Up @@ -178,6 +214,8 @@ def run_on_worker_and_fetch_result():

# TODO: handle possible spark exception here. # pylint: disable=fixme
worker_rdd = self._spark.sparkContext.parallelize([0], 1)
if self._resource_profile:
worker_rdd = worker_rdd.withResources(self._resource_profile)
def mapper_fn(_):
return cloudpickle.dumps(func())
if self._spark_supports_job_cancelling:
Expand Down
58 changes: 58 additions & 0 deletions joblibspark/utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,58 @@
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
The utils functions for joblib spark backend.
"""
from packaging.version import Version
import pyspark


# pylint: disable=import-outside-toplevel
def get_spark_session():
"""
Get the spark session from the active session or create a new one.
"""
from pyspark.sql import SparkSession

spark_session = SparkSession.getActiveSession()
if spark_session is None:
spark_session = SparkSession \
.builder \
.appName("JoblibSparkBackend") \
.getOrCreate()
return spark_session


def create_resource_profile(num_cpus_per_spark_task, num_gpus_per_spark_task):
"""
Create a resource profile for the task.
:param num_cpus_per_spark_task: Number of cpus for each Spark task of current spark job stage.
:param num_gpus_per_spark_task: Number of gpus for each Spark task of current spark job stage.
:return: Spark ResourceProfile
"""
resource_profile = None
if Version(pyspark.__version__).release >= (3, 4, 0):
try:
from pyspark.resource.profile import ResourceProfileBuilder
from pyspark.resource.requests import TaskResourceRequests
except ImportError:
pass
task_res_req = TaskResourceRequests().cpus(num_cpus_per_spark_task)
if num_gpus_per_spark_task > 0:
task_res_req = task_res_req.resource("gpu", num_gpus_per_spark_task)
resource_profile = ResourceProfileBuilder().require(task_res_req).build
return resource_profile
1 change: 1 addition & 0 deletions requirements.txt
Original file line number Diff line number Diff line change
@@ -1 +1,2 @@
joblib>=0.14
packaging
4 changes: 4 additions & 0 deletions test/discover_2_gpu.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
#!/bin/bash

# This script is used in spark GPU cluster config for discovering available GPU.
echo "{\"name\":\"gpu\",\"addresses\":[\"0\",\"1\"]}"
94 changes: 83 additions & 11 deletions test/test_backend.py
Original file line number Diff line number Diff line change
@@ -1,20 +1,92 @@
import warnings
import os
from packaging.version import Version
import unittest
from unittest.mock import MagicMock

import pyspark
from pyspark.sql import SparkSession

from joblibspark.backend import SparkDistributedBackend


def test_effective_n_jobs():
class TestLocalSparkCluster(unittest.TestCase):
@classmethod
def setup_class(cls):
cls.spark = (
SparkSession.builder.master("local[*]").getOrCreate()
)

@classmethod
def teardown_class(cls):
cls.spark.stop()

def test_effective_n_jobs(self):
backend = SparkDistributedBackend()
max_num_concurrent_tasks = 8
backend._get_max_num_concurrent_tasks = MagicMock(return_value=max_num_concurrent_tasks)

assert backend.effective_n_jobs(n_jobs=None) == 1
assert backend.effective_n_jobs(n_jobs=-1) == 8
assert backend.effective_n_jobs(n_jobs=4) == 4

with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
assert backend.effective_n_jobs(n_jobs=16) == 16
assert len(w) == 1

def test_resource_profile_supported(self):
backend = SparkDistributedBackend()
# The test fixture uses a local (standalone) Spark instance, which doesn't support stage-level scheduling.
assert not backend._support_stage_scheduling


class TestBasicSparkCluster(unittest.TestCase):
@classmethod
def setup_class(cls):
cls.num_cpus_per_spark_task = 1
cls.num_gpus_per_spark_task = 1
gpu_discovery_script_path = os.path.join(
os.path.dirname(os.path.abspath(__file__)), "discover_2_gpu.sh"
)

cls.spark = (
SparkSession.builder.master("local-cluster[1, 2, 1024]")
.config("spark.task.cpus", "1")
.config("spark.task.resource.gpu.amount", "1")
.config("spark.executor.cores", "2")
.config("spark.worker.resource.gpu.amount", "2")
.config("spark.executor.resource.gpu.amount", "2")
.config("spark.task.maxFailures", "1")
.config(
"spark.worker.resource.gpu.discoveryScript", gpu_discovery_script_path
)
.getOrCreate()
)

@classmethod
def teardown_class(cls):
cls.spark.stop()

@unittest.skipIf(Version(pyspark.__version__).release < (3, 4, 0),
"Resource group is only supported since spark 3.4.0")
def test_resource_profile(self):
backend = SparkDistributedBackend(
num_cpus_per_spark_task=self.num_cpus_per_spark_task,
num_gpus_per_spark_task=self.num_gpus_per_spark_task)

assert backend._support_stage_scheduling

resource_group = backend._resource_profile
assert resource_group.taskResources['cpus'].amount == 1.0
assert resource_group.taskResources['gpu'].amount == 1.0

backend = SparkDistributedBackend()
max_num_concurrent_tasks = 8
backend._get_max_num_concurrent_tasks = MagicMock(return_value=max_num_concurrent_tasks)
@unittest.skipIf(Version(pyspark.__version__).release < (3, 4, 0),
"Resource group is only supported since spark 3.4.0")
def test_resource_with_default(self):
backend = SparkDistributedBackend()

assert backend.effective_n_jobs(n_jobs=None) == 1
assert backend.effective_n_jobs(n_jobs=-1) == 8
assert backend.effective_n_jobs(n_jobs=4) == 4
assert backend._support_stage_scheduling

with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
assert backend.effective_n_jobs(n_jobs=16) == 16
assert len(w) == 1
resource_group = backend._resource_profile
assert resource_group.taskResources['cpus'].amount == 1.0
Loading
Loading