forked from labsyspharm/ashlar
-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
220 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,220 @@ | ||
import pathlib | ||
|
||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
import skimage.io | ||
from ashlar import reg, utils, thumbnail | ||
|
||
|
||
class TestMetadata(reg.Metadata): | ||
def __init__( | ||
self, | ||
path, | ||
tile_size, | ||
overlap, | ||
pixel_size, | ||
channel=0, | ||
zarr=None, | ||
img=None, | ||
series=None, | ||
): | ||
self.path = pathlib.Path(path) | ||
self._tile_size = np.array(tile_size) | ||
self.overlap = overlap | ||
self._pixel_size = pixel_size | ||
self.channel = channel | ||
self.zarr = zarr | ||
self.img = img | ||
self.series = series | ||
self.deconstruct_mosaic() | ||
|
||
def deconstruct_mosaic(self): | ||
if self.zarr is not None: | ||
self.mosaic = self.zarr | ||
|
||
if self.img is not None: | ||
self.mosaic = self.img | ||
|
||
if self.zarr is None and self.img is None: | ||
self.mosaic = skimage.io.imread(self.path, key=self.channel) | ||
|
||
m_shape = self.mosaic.shape | ||
|
||
step_shape = (1 - self.overlap) * self._tile_size | ||
# round position to integer since no subpixel needed for already stitched image | ||
step_shape = np.around(step_shape).astype("int") | ||
overlap_shape = np.around(self.overlap * self._tile_size).astype(int) | ||
m_limit = m_shape - overlap_shape | ||
|
||
self._slice_positions = ( | ||
np.mgrid[: m_limit[0] : step_shape[0], : m_limit[1] : step_shape[1]] | ||
.reshape(2, -1) | ||
.T | ||
) | ||
|
||
self._positions = self._slice_positions.astype(float) | ||
|
||
if self.series is not None: | ||
self._slice_positions = self._slice_positions[self.series] | ||
self._positions = self._positions[self.series] | ||
|
||
@property | ||
def _num_images(self): | ||
return len(self._positions) | ||
|
||
@property | ||
def num_channels(self): | ||
return 1 | ||
|
||
@property | ||
def pixel_size(self): | ||
return self._pixel_size | ||
|
||
@property | ||
def pixel_dtype(self): | ||
return self.zarr.dtype | ||
|
||
@property | ||
def mosaic_shape(self): | ||
return self.zarr.shape | ||
|
||
def tile_size(self, i): | ||
return self._tile_size | ||
|
||
|
||
class TestReader(reg.Reader): | ||
def __init__( | ||
self, | ||
path=None, | ||
tile_size=(1000, 1000), | ||
overlap=0.1, | ||
pixel_size=1, | ||
channel=0, | ||
zarr=None, | ||
img=None, | ||
series=None, | ||
flip_x=False, | ||
flip_y=False, | ||
angle=0, | ||
center_crop_shape=None, | ||
noise=0, | ||
): | ||
path = "" if path is None else path | ||
self.metadata = TestMetadata( | ||
path, tile_size, overlap, pixel_size, channel, zarr, img, series | ||
) | ||
self.path = pathlib.Path(path) | ||
self.mosaic = self.metadata.mosaic | ||
self.flip_x = flip_x | ||
self.flip_y = flip_y | ||
self.angle = angle | ||
self.noise = noise | ||
|
||
def read(self, series, c): | ||
position = self.metadata._slice_positions[series] | ||
assert np.issubdtype(position.dtype, np.integer) | ||
r, c = position | ||
h, w = self.metadata._tile_size | ||
img = self.mosaic[r : r + h, c : c + w] | ||
if self.noise: | ||
r = np.random.RandomState(seed=series) | ||
noise_img = r.randint(0, self.noise + 1, size=img.shape) | ||
img = np.clip(img + noise_img, img.min(), img.max()).astype(img.dtype) | ||
if not np.all(img.shape == (h, w)): | ||
img_h, img_w = img.shape | ||
pad_h, pad_w = np.clip([h - img_h, w - img_w], 0, None) | ||
img = np.pad(img, [(0, pad_h), (0, pad_w)]) | ||
if self.flip_x: | ||
img = np.fliplr(img) | ||
if self.flip_y: | ||
img = np.flipud(img) | ||
if self.angle != 0: | ||
img = skimage.transform.rotate(img, self.angle, center=(0, 0), resize=True) | ||
return img | ||
|
||
|
||
def align_cycles(reader1, reader2, scale=0.05): | ||
import skimage.transform | ||
|
||
if not hasattr(reader1, "thumbnail"): | ||
raise ValueError("reader1 does not have a thumbnail") | ||
if not hasattr(reader2, "thumbnail"): | ||
raise ValueError("reader2 does not have a thumbnail") | ||
img1 = reader1.thumbnail | ||
img2 = reader2.thumbnail | ||
padded_shape = np.array((img1.shape, img2.shape)).max(axis=0) | ||
img1 = skimage.transform.warp(img1, np.eye(3), output_shape=padded_shape) | ||
img2 = skimage.transform.warp(img2, np.eye(3), output_shape=padded_shape) | ||
angle = utils.register_angle(img1, img2, sigma=1) | ||
if angle != 0: | ||
print(f"\r estimated cycle rotation = {angle:.2f} degrees") | ||
rotation_center = 0.5 * np.array(padded_shape[::-1]) - 0.5 | ||
img2 = skimage.transform.rotate( | ||
img2, angle, resize=False, center=rotation_center | ||
) | ||
shifts = thumbnail.calculate_image_offset(img1, img2, int(1 / scale)) | ||
print(f"\r estimated shift {shifts / scale}") | ||
tform_steps = [ | ||
("translation", -reader2.metadata.origin[::-1]), | ||
("scale", scale), | ||
("translation", -rotation_center), | ||
("rotation", np.deg2rad(-angle)), | ||
("translation", rotation_center), | ||
("translation", shifts[::-1]), | ||
("scale", 1 / scale), | ||
("translation", reader1.metadata.origin[::-1]), | ||
] | ||
tform = skimage.transform.AffineTransform() | ||
for step in tform_steps: | ||
tform += skimage.transform.AffineTransform(**{step[0]: step[1]}) | ||
|
||
return tform | ||
|
||
|
||
import numpy as np | ||
import skimage.data | ||
import skimage.transform | ||
from ashlar import thumbnail | ||
|
||
TILE_SIZE = (108, 128) | ||
|
||
img = skimage.data.astronaut()[..., 1] | ||
c1r = TestReader(img=img, tile_size=TILE_SIZE, overlap=0.25, noise=1) | ||
|
||
affine = skimage.transform.AffineTransform | ||
#tform = affine( | ||
# translation=200 * (np.random.random(2) - 0.5), | ||
# rotation=np.deg2rad(-10 * (np.random.random(1) - 0.5)[0]), | ||
#) | ||
tform = ( | ||
affine(translation=(-250, -280)) | ||
+ affine(rotation=np.deg2rad(88)) | ||
+ affine(translation=(250, 280)) | ||
) | ||
|
||
# apply known transform to image | ||
img2 = skimage.transform.warp(img, tform.inverse, preserve_range=True).astype(img.dtype) | ||
c2r = TestReader(img=img2, tile_size=TILE_SIZE, overlap=0.25, noise=1) | ||
|
||
# set random stage origin | ||
c1r.metadata._positions += 2000 * (np.random.random(2) - 0.5) | ||
c2r.metadata._positions += 2000 * (np.random.random(2) - 0.5) | ||
|
||
# randomly perturb stage positions | ||
c1r.metadata._positions += np.random.random_sample(c1r.metadata._positions.shape) * 5 | ||
c2r.metadata._positions += np.random.random_sample(c2r.metadata._positions.shape) * 5 | ||
|
||
a1 = reg.EdgeAligner(c1r, verbose=True) | ||
a1.run() | ||
print() | ||
a2 = reg.LayerAligner(c2r, a1, verbose=True) | ||
a2.run() | ||
|
||
fig, (ax1, ax2) = plt.subplots(1, 2) | ||
ax1.imshow(a1.reader.thumbnail, cmap='gray', vmax=2e5) | ||
ax2.imshow(a2.reader.thumbnail, cmap='gray', vmax=2e5) | ||
for i, (y, x) in enumerate(a1.metadata.centers - a1.metadata.origin): | ||
ax1.annotate(str(i), (x,y), ha='center', va='center', color='yellow') | ||
for i, (y, x) in enumerate(a2.metadata.centers - a2.metadata.origin): | ||
ax2.annotate(str(i), (x,y), ha='center', va='center', color='magenta') | ||
plt.show() |