1.Clone the Repository:
```
git clone https://github.com/jlm429/gradescope_autograder
```
2.Customize the Docker Environment:
- Select a base image: See Gradescope Docker Hub repository.
- Modify Dockerfile or setup.sh: Customize the environment by editing the Dockerfile or the setup.sh script.
- Example:
-
In the Dockerfile: Add commands to update the package list and install necessary packages.
``` RUN apt-get update && \ apt-get install -yq --no-install-recommends \ python3-pip \ && apt-get clean ```
-
In setup.sh: Add commands to upgrade pip and install required Python packages.
``` #!/usr/bin/env bash pip install --no-cache-dir --upgrade pip pip install --no-cache-dir torch pip install -r /autograder/source/requirements.txt ```
-
- Example:
3.Change to the Docker Directory and Build the Image:
```
cd gradescope_autograder/docker
docker build -t username/image_name:tag .
```
4.Push the Image to DockerHub:
```
docker push username/image_name:tag
```
5.Use the Image on Gradescope:
- Pull the Docker image on Gradescope by entering the DockerHub username/image_name:tag.
- Submit
example_submit.py
for testing.
6.Optional: Test the Build Locally:
```
docker run --rm -v /path/to/submission:/autograder/submission -v /path/to/results:/autograder/results username/image_name:tag /autograder/run_autograder && cat /path/to/results/results.json
```
For more detailed instructions, refer to the Gradescope Autograders Documentation.