-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimports.py
543 lines (405 loc) · 17 KB
/
imports.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
from torch import nn, optim, as_tensor
from torch.utils.data import Dataset, DataLoader
import torch.nn.functional as F
from torch.optim import lr_scheduler
from torch.nn.init import *
from torchvision import transforms, utils, datasets
import torchvision.models as models
import cv2
from PIL import Image, ImageGrab
from pdb import set_trace
import time
import copy
from pathlib import Path
import os
import sys
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import matplotlib.cm as cmx
import matplotlib.colors as mcolors
from cycler import cycler
from skimage import io, transform
from tqdm import trange, tqdm
import pandas as pd
import numpy as np
from numpy import ones,vstack
from numpy.linalg import lstsq
from statistics import mean
from collections import Counter
import collections
from random import shuffle
from datetime import datetime
from IPython.display import Image
from mss import mss
import pyautogui
from pynput import keyboard
# plt.ion() # interactive mode
device = torch.device("cuda:0" if (torch.cuda.is_available() and ngpu > 0) else "cpu")
def to_bb(YY, y="deprecated"):
"""Convert mask YY to a bounding box, assumes 0 as background nonzero object"""
cols,rows = np.nonzero(YY)
if len(cols)==0: return np.zeros(4, dtype=np.float32)
top_row = np.min(rows)
left_col = np.min(cols)
bottom_row = np.max(rows)
right_col = np.max(cols)
return np.array([left_col, top_row, right_col, bottom_row], dtype=np.float32)
def get_cmap(N):
color_norm = mcolors.Normalize(vmin=0, vmax=N-1)
return cmx.ScalarMappable(norm=color_norm, cmap='Set3').to_rgba
def show_ground_truth(ax, im, bbox, clas=None, prs=None, thresh=0.3):
#set_trace()
bb = [bb_hw(o) for o in bbox.reshape(-1,4)]
if prs is None: prs = [None]*len(bb)
if clas is None: clas = [None]*len(bb)
ax = show_img(im, ax=ax)
for i,(b,c,pr) in enumerate(zip(bb, clas, prs)):
if((b[2]>0) and (pr is None or pr > thresh)):
draw_rect(ax, b, color=colr_list[i%num_colr])
txt = f'{i}: '
if c is not None:
c = int(c)
txt += ('bg' if c==len(id2cat) else id2cat[c])
if pr is not None: txt += f' {pr:.2f}'
draw_text(ax, b[:2], txt, color=colr_list[i%num_colr])
def get_trn_anno():
trn_anno = collections.defaultdict(lambda:[])
for o in trn_j[ANNOTATIONS]:
if not o['ignore']:
bb = o[BBOX]
bb = np.array([bb[1], bb[0], bb[3]+bb[1]-1, bb[2]+bb[0]-1])
trn_anno[o[IMG_ID]].append((bb,o[CAT_ID]))
return trn_anno
def show_img(im, figsize=None, ax=None):
if not ax: fig,ax = plt.subplots(figsize=figsize)
ax.imshow(im)
ax.set_xticks(np.linspace(0, 224, 8))
ax.set_yticks(np.linspace(0, 224, 8))
ax.grid()
ax.set_yticklabels([])
ax.set_xticklabels([])
return ax
def draw_outline(o, lw):
o.set_path_effects([patheffects.Stroke(
linewidth=lw, foreground='black'), patheffects.Normal()])
def draw_rect(ax, b, color='white'):
patch = ax.add_patch(patches.Rectangle(b[:2], *b[-2:], fill=False, edgecolor=color, lw=2))
draw_outline(patch, 4)
def draw_text(ax, xy, txt, sz=14, color='white'):
text = ax.text(*xy, txt,
verticalalignment='top', color=color, fontsize=sz, weight='bold')
draw_outline(text, 1)
def bb_hw(a): return np.array([a[1],a[0],a[3]-a[1]+1,a[2]-a[0]+1])
def draw_im(im, ann):
ax = show_img(im, figsize=(16,8))
for b,c in ann:
b = bb_hw(b)
draw_rect(ax, b)
draw_text(ax, b[:2], cats[c], sz=16)
def draw_idx(i):
im_a = trn_anno[i]
im = open_image(IMG_PATH/trn_fns[i])
draw_im(im, im_a)
def hw2corners(ctr, hw): return torch.cat([ctr-hw/2, ctr+hw/2], dim=1)
class Flatten(nn.Module):
def __init__(self):
super(Flatten, self).__init__()
def forward(self, x):
x = x.view(x.size(0), -1)
return x
class normalize(nn.Module):
def __init__(self):
super(normalize, self).__init__()
def forward(self, x):
x = F.normalize(x, p=2, dim=1)
return x
class UnNormalize(object):
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, tensor):
"""
Args:
tensor (Tensor): Tensor image of size (C, H, W) to be normalized.
Returns:
Tensor: Normalized image.
"""
dtype = tensor.dtype
self.mean = torch.as_tensor(self.mean, dtype=dtype, device=tensor.device)
self.std = torch.as_tensor(self.std, dtype=dtype, device=tensor.device)
tensor = tensor.mul(self.std[:, None, None]).add(self.mean[:, None, None])
# for t, m, s in zip(tensor, self.mean, self.std):
# t.mul_(s).add_(m)
# # The normalize code -> t.sub_(m).div_(s)
return tensor
class Normalize(object):
def __init__(self, mean, std, inplace=False):
self.mean = mean
self.std = std
self.inplace = inplace
def __call__(self, tensor):
"""
Args:
tensor (Tensor): Tensor image of size (C, H, W) to be normalized.
Returns:
Tensor: Normalized image.
"""
if self.inplace:
for t, m, s in zip(tensor, self.mean, self.std):
t.sub_(m).div_(s)
return tensor
dtype = tensor.dtype
self.mean = torch.as_tensor(self.mean, dtype=dtype, device=tensor.device)
self.std = torch.as_tensor(self.std, dtype=dtype, device=tensor.device)
tensor = tensor.sub(self.mean[:, None, None]).div(self.std[:, None, None])
return tensor
def parse_csv_labels(fn, skip_header=True, cat_separator = ' '):
df = pd.read_csv(fn, index_col=0, header=0 if skip_header else None, dtype=str)
fnames = df.index.values
df.iloc[:,0] = df.iloc[:,0].str.split(cat_separator)
return fnames, list(df.to_dict().values())[0]
def dict_source(folder, fnames, csv_labels, suffix='', continuous=False):
all_labels = sorted(list(set(p for o in csv_labels.values() for p in ([] if type(o) == float else o))))
full_names = [os.path.join(folder,str(fn)+suffix) for fn in fnames]
label2idx = {v:k for k,v in enumerate(all_labels)}
label_arr = nhot_labels(label2idx, csv_labels, fnames, len(all_labels))
is_single = np.all(label_arr.sum(axis=1)==1)
if is_single: label_arr = np.argmax(label_arr, axis=1)
return full_names, label_arr, all_labels
def csv_source(folder, csv_file, skip_header=True, suffix='', continuous=False, cat_separator=' '):
fnames,csv_labels = parse_csv_labels(csv_file, skip_header, cat_separator)
return dict_source(folder, fnames, csv_labels, suffix, continuous)
def nhot_labels(label2idx, csv_labels, fnames, c):
all_idx = {k: n_hot([label2idx[o] for o in ([] if type(v) == float else v)], c)
for k,v in csv_labels.items()}
return np.stack([all_idx[o] for o in fnames])
def n_hot(ids, c):
res = np.zeros((c,), dtype=np.float32)
res[ids] = 1
return res
def get_cv_idxs(n, cv_idx=0, val_pct=0.2, seed=42):
np.random.seed(seed)
n_val = int(val_pct*n)
idx_start = cv_idx*n_val
idxs = np.random.permutation(n)
return idxs[idx_start:idx_start+n_val]
def split_by_idx(idxs, *a):
mask = np.zeros(len(a[0]),dtype=bool)
mask[np.array(idxs)] = True
return [(o[mask],o[~mask]) for o in a]
USE_GPU = torch.cuda.is_available()
def to_gpu(x, *args, **kwargs):
'''puts pytorch variable to gpu, if cuda is available and USE_GPU is set to true. '''
return x.cuda(*args, **kwargs) if USE_GPU else x
def is_half_tensor(v):
return isinstance(v, torch.cuda.HalfTensor)
def T(a, half=False, cuda=True):
"""
Convert numpy array into a pytorch tensor.
if Cuda is available and USE_GPU=True, store resulting tensor in GPU.
"""
if not torch.is_tensor(a):
a = np.array(np.ascontiguousarray(a))
if a.dtype in (np.int8, np.int16, np.int32, np.int64):
a = torch.LongTensor(a.astype(np.int64))
elif a.dtype in (np.float32, np.float64):
a = to_half(a) if half else torch.FloatTensor(a)
else: raise NotImplementedError(a.dtype)
if cuda: a = to_gpu(a)
return a
def create_variable(x, volatile, requires_grad=True):
if type (x) != torch.autograd.Variable:
x = torch.autograd.Variable(T(x), requires_grad=requires_grad, volatile=volatile)
return x
def V_(x, requires_grad=True, volatile=False):
'''equivalent to create_variable, which creates a pytorch tensor'''
return create_variable(x, volatile=volatile, requires_grad=requires_grad)
def V(x, requires_grad=True, volatile=False):
'''creates a single or a list of pytorch tensors, depending on input x. '''
return map_over(x, lambda o: V_(o, requires_grad, volatile))
def to_np(v):
'''returns an np.array object given an input of np.array, list, tuple, torch variable or tensor.'''
if isinstance(v, float): return np.array(v)
if isinstance(v, (np.ndarray, np.generic)): return v
if isinstance(v, (list,tuple)): return [to_np(o) for o in v]
if isinstance(v, torch.autograd.Variable): v=v.data
if torch.cuda.is_available():
if is_half_tensor(v): v=v.float()
if isinstance(v, torch.FloatTensor): v=v.float()
return v.cpu().numpy()
def is_listy(x): return isinstance(x, (list,tuple))
def is_iter(x): return isinstance(x, collections.Iterable)
def map_over(x, f): return [f(o) for o in x] if is_listy(x) else f(x)
def create_noise(b):
return V(torch.zeros(b, nz, 1, 1).normal_(0, 1)).to(device)
def gallery(x, nc=3):
n,h,w,c = x.shape
nr = n//nc
assert n == nr*nc
return (x.reshape(nr, nc, h, w, c)
.swapaxes(1,2)
.reshape(h*nr, w*nc, c))
def set_trainable_attr(m,b):
m.trainable=b
for p in m.parameters(): p.requires_grad=b
def apply_leaf(m, f):
c = list(m.children())
if isinstance(m, nn.Module): f(m)
if len(c)>0:
for l in c: apply_leaf(l,f)
def set_trainable(l, b):
apply_leaf(l, lambda m: set_trainable_attr(m,b))
class ConvnetBuilder():
"""Class representing a convolutional network.
Arguments:
f: a model creation function (e.g. resnet34, vgg16, etc)
c (int): size of the last layer
is_multi (bool): is multilabel classification?
(def here http://scikit-learn.org/stable/modules/multiclass.html)
is_reg (bool): is a regression?
ps (float or array of float): dropout parameters
xtra_fc (list of ints): list of hidden layers with # hidden neurons
xtra_cut (int): # layers earlier than default to cut the model, default is 0
custom_head : add custom model classes that are inherited from nn.modules at the end of the model
that is mentioned on Argument 'f'
"""
def __init__(self, f, c, is_multi, is_reg, ps=None, xtra_fc=None, xtra_cut=0, custom_head=None, pretrained=True):
self.f,self.c,self.is_multi,self.is_reg,self.xtra_cut = f,c,is_multi,is_reg,xtra_cut
if xtra_fc is None: xtra_fc = [512]
if ps is None: ps = [0.25]*len(xtra_fc) + [0.5]
self.ps,self.xtra_fc = ps,xtra_fc
cut,self.lr_cut = [8,6] # taken from model_meta dict for resnet_34
cut-=xtra_cut
layers = cut_model(f(pretrained), cut)
self.nf = model_features[f] if f in model_features else (num_features(layers)*2)
if not custom_head: layers += [AdaptiveConcatPool2d(), Flatten()]
self.top_model = nn.Sequential(*layers)
n_fc = len(self.xtra_fc)+1
if not isinstance(self.ps, list): self.ps = [self.ps]*n_fc
if custom_head: fc_layers = [custom_head]
else: fc_layers = self.get_fc_layers()
self.n_fc = len(fc_layers)
self.fc_model = to_gpu(nn.Sequential(*fc_layers))
if not custom_head: apply_init(self.fc_model, kaiming_normal)
self.model = to_gpu(nn.Sequential(*(layers+fc_layers)))
@property
def name(self): return f'{self.f.__name__}_{self.xtra_cut}'
def create_fc_layer(self, ni, nf, p, actn=None):
res=[nn.BatchNorm1d(num_features=ni)]
if p: res.append(nn.Dropout(p=p))
res.append(nn.Linear(in_features=ni, out_features=nf))
if actn: res.append(actn)
return res
def get_fc_layers(self):
res=[]
ni=self.nf
for i,nf in enumerate(self.xtra_fc):
res += self.create_fc_layer(ni, nf, p=self.ps[i], actn=nn.ReLU())
ni=nf
final_actn = nn.Sigmoid() if self.is_multi else nn.LogSoftmax()
if self.is_reg: final_actn = None
res += self.create_fc_layer(ni, self.c, p=self.ps[-1], actn=final_actn)
return res
def get_layer_groups(self, do_fc=False):
if do_fc:
return [self.fc_model]
idxs = [self.lr_cut]
c = children(self.top_model)
if len(c)==3: c = children(c[0])+c[1:]
lgs = list(split_by_idxs(c,idxs))
return lgs+[self.fc_model]
def cut_model(m, cut):
return list(m.children())[:cut] if cut else [m]
def num_features(m):
c=children(m)
if len(c)==0: return None
for l in reversed(c):
if hasattr(l, 'num_features'): return l.num_features
res = num_features(l)
if res is not None: return res
def children(m): return m if isinstance(m, (list, tuple)) else list(m.children())
class Rescale(object):
"""Rescale the image in a sample to a given size.
Args:
output_size (tuple or int): Desired output size. If tuple, output is
matched to output_size. If int, smaller of image edges is matched
to output_size keeping aspect ratio the same.
"""
def __init__(self, output_size):
assert isinstance(output_size, (int, tuple))
self.output_size = output_size
def __call__(self, sample):
image, landmarks = sample['image'], sample['landmarks']
h, w = image.shape[:2]
if isinstance(self.output_size, int):
if h > w:
new_h, new_w = self.output_size * h / w, self.output_size
else:
new_h, new_w = self.output_size, self.output_size * w / h
else:
new_h, new_w = self.output_size
new_h, new_w = int(new_h), int(new_w)
img = transform.resize(image, (new_h, new_w))
# h and w are swapped for landmarks because for images,
# x and y axes are axis 1 and 0 respectively
landmarks = landmarks * [new_w / w, new_h / h]
return {'image': img, 'landmarks': landmarks}
class BCE_Loss(nn.Module):
def __init__(self, num_classes):
super().__init__()
self.num_classes = num_classes
def forward(self, pred, targ):
t = one_hot_embedding(targ, self.num_classes+1)
t = V(t[:,:-1].contiguous()).cpu()
x = pred[:,:-1]
w = self.get_weight(x,t)
return F.binary_cross_entropy_with_logits(x, t, w, size_average=False)/self.num_classes
def get_weight(self,x,t): return None
def one_hot_embedding(labels, num_classes):
return torch.eye(num_classes)[labels.data.long().cpu()]
def intersect(box_a, box_b):
max_xy = torch.min(box_a[:, None, 2:], box_b[None, :, 2:])
min_xy = torch.max(box_a[:, None, :2], box_b[None, :, :2])
inter = torch.clamp((max_xy - min_xy), min=0)
return inter[:, :, 0] * inter[:, :, 1]
def box_sz(b): return ((b[:, 2]-b[:, 0]) * (b[:, 3]-b[:, 1]))
def jaccard(box_a, box_b):
inter = intersect(box_a, box_b)
union = box_sz(box_a).unsqueeze(1) + box_sz(box_b).unsqueeze(0) - inter
return inter / union
def get_y(bbox,clas):
sz = 224
bbox = bbox.view(-1,4)/sz
bb_keep = ((bbox[:,2]-bbox[:,0])>0).nonzero()[:,0]
return bbox[bb_keep],clas[bb_keep]
def actn_to_bb(actn, anchors):
actn_bbs = torch.tanh(actn)
actn_centers = (actn_bbs[:,:2]/2 * grid_sizes) + anchors[:,:2]
actn_hw = (actn_bbs[:,2:]/2+1) * anchors[:,2:]
return hw2corners(actn_centers, actn_hw)
def map_to_ground_truth(overlaps, print_it=False):
prior_overlap, prior_idx = overlaps.max(1)
if print_it: print(prior_overlap)
gt_overlap, gt_idx = overlaps.max(0)
gt_overlap[prior_idx] = 1.99
for i,o in enumerate(prior_idx): gt_idx[o] = i
return gt_overlap,gt_idx
def open_image(fn):
im = cv2.imread(str(fn), flags).astype(np.float32)/255
return cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
def torch_gt(ax, ima, bbox, clas, prs=None, thresh=0.4):
return show_ground_truth(ax, ima, to_np((bbox*224).long()),
to_np(clas), to_np(prs) if prs is not None else None, thresh)
def intersect(box_a, box_b):
max_xy = torch.min(box_a[:, None, 2:], box_b[None, :, 2:])
min_xy = torch.max(box_a[:, None, :2], box_b[None, :, :2])
inter = torch.clamp((max_xy - min_xy), min=0)
return inter[:, :, 0] * inter[:, :, 1]
def box_sz(b): return ((b[:, 2]-b[:, 0]) * (b[:, 3]-b[:, 1]))
def jaccard(box_a, box_b):
inter = intersect(box_a, box_b)
union = box_sz(box_a).unsqueeze(1) + box_sz(box_b).unsqueeze(0) - inter
return inter / union
def get_model(model:nn.Module):
"Return the model maybe wrapped inside `model`."
return model.module if isinstance(model, nn.DataParallel) else model