forked from Corrod3/SecurityPolicyForecastingTournament
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathforecasts.Rmd
261 lines (152 loc) · 6.06 KB
/
forecasts.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
---
title: "Forecasting in IR"
subtitle: "Security Policy Forecasting Tournament"
author: "Alexander Sacharow"
date: "02 May 2017"
output:
ioslides_presentation:
css: general/tables.css
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = FALSE)
# Clear Global environment
rm(list=ls())
## Setting Working directory
try(setwd("D:/Eigene Datein/Dokumente/Uni/Hertie/Materials/Master thesis/SecurityPolicyForecastingTournament"), silent = TRUE)
library(knitr)
source("main.R")
```
## Why Forecasting? {.text40}
<div class="centered">
What do we want to achieve with forecasting?
</div>
## Why Forecasting?
<div class="columns-2">
<div style="color:#C02F39;">**Authors: Scientists, Analysts**</div>
- to get it right
- value in itself?
- test theories (Friedman, 1966; Ward, 2016)
- Central function of science next to explanation
- how much can we know?
<div style="color:#C02F39;">**Users: Policy makers etc.**</div>
- basis of decision making
- influence future
- show alternatives
- Early-Warning
- Basis for preparation
</div>
## Is Forecasting Possible?
<div class="centered">
<p style="font-size: 40px">
Is successful forecasting in international politics possible at all?
</p>
</div>
## Is Forecasting Possible?
<div class="columns-2">
<div style="color:#C02F39;">**The Skeptics**</div>
- Politics are like *Clouds* (Almond et al., 1977)
- Non-Linearity
- limit to conclusions from the past
- *Black swan* (Taleb, 2007)
- High impact events are often unexpected
- e.g. discovery of America, Arab Spring
<div style="color:#C02F39;">**The Optimists**</div>
- *The poets*
- Yes, but without probabilities (Scenarios, Mega trends)
- *The mathematicians*
- Yes, with sufficient data (Chourci, 1974; Ward, 2016)
- With crowds
- Groups, competitions, markets
</div>
## Forecasting methods - overview
1. **Strategic Foresight**
2. **Statistical models**
3. **Forecasting competitions**
4. Intuitive forecasts
5. Expert forecasts
6. Prediction markets
7. Intelligence Estimates
## Strategic Foresight
Example: [European Union in the World 2025](http://www.dahrendorf-forum.eu/wp-content/uploads/2016/05/Dahrendorf_Analysis_EU_2025_15.pdf) by Dahrendorf Forum
- Essentially: Scenario analysis
- originated and widely used in the corporate sector
- Shell Foresight 1960s (Pierre Wack)
<div style="color:#C02F39;">**Advantage:**</div>
- No content restrictions
- consistency of scenarios as key quality criteria
<div style="color:#C02F39;">**Disadvantage:**</div>
- No likelihood judgements (policy maker ask for it)
- how can scenarios be verify?
## Statistical Models
Example: *World-Wide Integrated Crisis Early Warning System (W-ICEWS)* [(Preview)](http://nbviewer.jupyter.org/gist/dmasad/f79ce5abfd4fb61d253b)
<div style="color:#C02F39;">**Advantage:**</div>
- can be verified
- less decision biases
<div style="color:#C02F39;">**Disadvantage:**</div>
- requires measureable events
- e.g. number of protesters / injured / death
- not applicable to many relevant questions
- e.g. International Court of Justice decision forecast
- data often not existing / too expensive
## Forecasting competitions
Example: [The Good Judgement Project](www.gjopen.com)
- for geopolitics relatively new (first in 2011)
- combine individual judgements and track record keeping of formal model
- Researchers: Philip Tetlock and Barbara Mellers
<div align="center">
<img src="general/superforecasting.jpg" width=160 height=250>
</div>
# Security Policy Forecasting Tournament
## Security Policy Forecasting Tournament
- 231 participants in total
- 53 Hertie students participated (48 on time, 5 late)
- short-term: 2.5 months
- other tournaments include question up to one / one and a half years
- 24 questions
- restricted to topics of the Security Policy class
- questions were externally reviewed before the tournament
## Performance
```{r, echo = FALSE, fig.width=4, fig.height=2.6, out.extra='style="float:left"'}
response.uni(9) + geom_vline(xintercept=0, colour="blue", linetype="dashed", size=1.5)
response.uni(16) + geom_vline(xintercept=1, colour="blue", linetype="dashed", size=1.5)
```
```{r, echo = FALSE, fig.width=4, fig.height=2.6, out.extra='style="float:left"'}
response.uni(13) + geom_vline(xintercept=0, colour="blue", linetype="dashed", size=1.5)
response.uni(6) + geom_vline(xintercept=0, colour="blue", linetype="dashed", size=1.5)
```
## Score distribution
- Score: Brier score
- intuition: closeness to truth
- mathematical: squared errors
- Hertie students compared to other participants
```{r, echo = FALSE, fig.width=5, fig.height=3}
ggplot(SB, aes(x = brier.avg, fill = part.group)) +
geom_histogram(binwidth=.1, position="dodge") + # bar type
#geom_density(alpha=.3) +
theme_bw() +
theme(#legend.title=element_blank(),
axis.title = element_text(size=18, colour = "#696969", family = "serif"), # Labels axis font size
axis.text = element_text(size=14, colour = "#696969"),
axis.line = element_line(colour = "#696969"),
axis.ticks = element_line(colour = "#696969")) +
labs( # title = "Brier score distribution",
fill = "Participant group",
x = "Brier score",
y = "Frequency") # labels))
```
## The research in the background
data used for testing, e.g.
- **Hypothesis 2: The marginal added value of time spend on forecasting is positive and decreases over time**
```{r, echo = FALSE, fig.width=5, fig.height=3.5, out.extra='style="float:center"'}
cor.brier.time.log.plot
```
## Scoreboard
```{r, echo = FALSE, message=FALSE, warning=FALSE}
SB %>% merge(read.csv("personalData.csv")[, c("ResponseId", "id.uni")],
by = "ResponseId") %>% filter(part.group == "uni") %>% arrange(brier.avg) %>%
select(HertieID = id.uni, brier.avg) %>% head(10) %>% mutate(rank = row_number()) %>% kable(format = "html")
```
## Questions {.text40}
<div class="centered" style="top:35%; position: fixed;">
Thank you for your attention
</div>