-
Notifications
You must be signed in to change notification settings - Fork 21
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
499 additions
and
0 deletions.
There are no files selected for viewing
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,141 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"import sys\n", | ||
"sys.path.append(\"../\")\n", | ||
"\n", | ||
"import os\n", | ||
"import numpy as np\n", | ||
"import pandas as pd\n", | ||
"import matplotlib.pyplot as plt\n", | ||
"from sklearn.model_selection import train_test_split\n", | ||
"from scorecardpipeline import *\n", | ||
"from scorecardpipeline.rule_extraction import DecisionTreeRuleExtractor\n", | ||
"\n", | ||
"\n", | ||
"logger = init_setting(seed=8888, logger=True)\n", | ||
"\n", | ||
"\n", | ||
"feature_map = {}\n", | ||
"n_samples = 10000\n", | ||
"ab = np.array(list('ABCDEFG'))\n", | ||
"\n", | ||
"data = pd.DataFrame({\n", | ||
" 'A': np.random.randint(10, size = n_samples),\n", | ||
" 'B': ab[np.random.choice(7, n_samples)],\n", | ||
" 'C': ab[np.random.choice(2, n_samples)],\n", | ||
" '时间': np.random.random(size = n_samples),\n", | ||
" 'target': np.random.randint(2, size = n_samples)\n", | ||
"})\n", | ||
"\n", | ||
"\n", | ||
"train, test = train_test_split(data, test_size=0.3, stratify=data[\"target\"])\n", | ||
"\n", | ||
"\n", | ||
"pdtr = DecisionTreeRuleExtractor(target=\"target\", feature_map=feature_map, max_iter=8)\n", | ||
"pdtr.fit(train, lift=0., max_depth=2, max_samples=1., verbose=False, min_samples_split=8, min_samples_leaf=5)\n", | ||
"report = pdtr.report(valid=[test, train, data], save=\"model_report/决策树组合策略挖掘.xlsx\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": " 组合策略 命中数 命中率 好样本数 好样本占比 坏样本数 坏样本占比 坏率 样本整体坏率 LIFT值\n0 B <= 0.495 & 时间 > 0.943 243 0.0347 142 0.0401 101 0.0292 0.4156 0.4941 0.8411\n1 B <= 0.495 & 时间 <= 0.943 3758 0.5369 1933 0.5459 1825 0.5276 0.4856 0.4941 0.9828\n2 B > 0.495 & 时间 <= 0.877 2669 0.3813 1321 0.3731 1348 0.3897 0.5051 0.4941 1.0221\n3 B > 0.495 & 时间 > 0.877 330 0.0471 145 0.0409 185 0.0535 0.5606 0.4941 1.1345\n4 B <= 0.495 & A <= 8.5 3605 0.5150 1889 0.5335 1716 0.4961 0.4760 0.4941 0.9633\n5 B > 0.495 & A > 4.5 1496 0.2137 749 0.2115 747 0.2160 0.4993 0.4941 1.0105\n6 B > 0.495 & A <= 4.5 1503 0.2147 717 0.2025 786 0.2272 0.5230 0.4941 1.0583\n7 B <= 0.495 & A > 8.5 396 0.0566 186 0.0525 210 0.0607 0.5303 0.4941 1.0732\n8 A <= 8.5 & A <= 3.5 2772 0.3960 1432 0.4044 1340 0.3874 0.4834 0.4941 0.9783\n9 A <= 8.5 & A > 3.5 3526 0.5037 1775 0.5013 1751 0.5062 0.4966 0.4941 1.0050\n10 A > 8.5 & C <= 0.494 358 0.0511 174 0.0491 184 0.0532 0.5140 0.4941 1.0401\n11 A > 8.5 & C > 0.494 344 0.0491 160 0.0452 184 0.0532 0.5349 0.4941 1.0824", | ||
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>组合策略</th>\n <th>命中数</th>\n <th>命中率</th>\n <th>好样本数</th>\n <th>好样本占比</th>\n <th>坏样本数</th>\n <th>坏样本占比</th>\n <th>坏率</th>\n <th>样本整体坏率</th>\n <th>LIFT值</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>B <= 0.495 & 时间 > 0.943</td>\n <td>243</td>\n <td>0.0347</td>\n <td>142</td>\n <td>0.0401</td>\n <td>101</td>\n <td>0.0292</td>\n <td>0.4156</td>\n <td>0.4941</td>\n <td>0.8411</td>\n </tr>\n <tr>\n <th>1</th>\n <td>B <= 0.495 & 时间 <= 0.943</td>\n <td>3758</td>\n <td>0.5369</td>\n <td>1933</td>\n <td>0.5459</td>\n <td>1825</td>\n <td>0.5276</td>\n <td>0.4856</td>\n <td>0.4941</td>\n <td>0.9828</td>\n </tr>\n <tr>\n <th>2</th>\n <td>B > 0.495 & 时间 <= 0.877</td>\n <td>2669</td>\n <td>0.3813</td>\n <td>1321</td>\n <td>0.3731</td>\n <td>1348</td>\n <td>0.3897</td>\n <td>0.5051</td>\n <td>0.4941</td>\n <td>1.0221</td>\n </tr>\n <tr>\n <th>3</th>\n <td>B > 0.495 & 时间 > 0.877</td>\n <td>330</td>\n <td>0.0471</td>\n <td>145</td>\n <td>0.0409</td>\n <td>185</td>\n <td>0.0535</td>\n <td>0.5606</td>\n <td>0.4941</td>\n <td>1.1345</td>\n </tr>\n <tr>\n <th>4</th>\n <td>B <= 0.495 & A <= 8.5</td>\n <td>3605</td>\n <td>0.5150</td>\n <td>1889</td>\n <td>0.5335</td>\n <td>1716</td>\n <td>0.4961</td>\n <td>0.4760</td>\n <td>0.4941</td>\n <td>0.9633</td>\n </tr>\n <tr>\n <th>5</th>\n <td>B > 0.495 & A > 4.5</td>\n <td>1496</td>\n <td>0.2137</td>\n <td>749</td>\n <td>0.2115</td>\n <td>747</td>\n <td>0.2160</td>\n <td>0.4993</td>\n <td>0.4941</td>\n <td>1.0105</td>\n </tr>\n <tr>\n <th>6</th>\n <td>B > 0.495 & A <= 4.5</td>\n <td>1503</td>\n <td>0.2147</td>\n <td>717</td>\n <td>0.2025</td>\n <td>786</td>\n <td>0.2272</td>\n <td>0.5230</td>\n <td>0.4941</td>\n <td>1.0583</td>\n </tr>\n <tr>\n <th>7</th>\n <td>B <= 0.495 & A > 8.5</td>\n <td>396</td>\n <td>0.0566</td>\n <td>186</td>\n <td>0.0525</td>\n <td>210</td>\n <td>0.0607</td>\n <td>0.5303</td>\n <td>0.4941</td>\n <td>1.0732</td>\n </tr>\n <tr>\n <th>8</th>\n <td>A <= 8.5 & A <= 3.5</td>\n <td>2772</td>\n <td>0.3960</td>\n <td>1432</td>\n <td>0.4044</td>\n <td>1340</td>\n <td>0.3874</td>\n <td>0.4834</td>\n <td>0.4941</td>\n <td>0.9783</td>\n </tr>\n <tr>\n <th>9</th>\n <td>A <= 8.5 & A > 3.5</td>\n <td>3526</td>\n <td>0.5037</td>\n <td>1775</td>\n <td>0.5013</td>\n <td>1751</td>\n <td>0.5062</td>\n <td>0.4966</td>\n <td>0.4941</td>\n <td>1.0050</td>\n </tr>\n <tr>\n <th>10</th>\n <td>A > 8.5 & C <= 0.494</td>\n <td>358</td>\n <td>0.0511</td>\n <td>174</td>\n <td>0.0491</td>\n <td>184</td>\n <td>0.0532</td>\n <td>0.5140</td>\n <td>0.4941</td>\n <td>1.0401</td>\n </tr>\n <tr>\n <th>11</th>\n <td>A > 8.5 & C > 0.494</td>\n <td>344</td>\n <td>0.0491</td>\n <td>160</td>\n <td>0.0452</td>\n <td>184</td>\n <td>0.0532</td>\n <td>0.5349</td>\n <td>0.4941</td>\n <td>1.0824</td>\n </tr>\n </tbody>\n</table>\n</div>" | ||
}, | ||
"execution_count": 2, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"report[0]" | ||
], | ||
"metadata": { | ||
"collapsed": false | ||
} | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": " 组合策略 命中数 命中率 好样本数 好样本占比 坏样本数 坏样本占比 坏率 样本整体坏率 LIFT值\n0 B <= 0.495 & 时间 > 0.943 96 0.0320 50 0.0329 46 0.0310 0.4792 0.4940 0.9700\n1 B <= 0.495 & 时间 <= 0.943 1604 0.5347 825 0.5435 779 0.5256 0.4857 0.4940 0.9831\n2 B > 0.495 & 时间 <= 0.877 1146 0.3820 570 0.3755 576 0.3887 0.5026 0.4940 1.0174\n3 B > 0.495 & 时间 > 0.877 154 0.0513 73 0.0481 81 0.0547 0.5260 0.4940 1.0647\n4 B <= 0.495 & A <= 8.5 1535 0.5117 791 0.5211 744 0.5020 0.4847 0.4940 0.9812\n5 B > 0.495 & A > 4.5 617 0.2057 306 0.2016 311 0.2099 0.5041 0.4940 1.0203\n6 B > 0.495 & A <= 4.5 683 0.2277 337 0.2220 346 0.2335 0.5066 0.4940 1.0255\n7 B <= 0.495 & A > 8.5 165 0.0550 84 0.0553 81 0.0547 0.4909 0.4940 0.9937\n8 A <= 8.5 & A <= 3.5 1214 0.4047 615 0.4051 599 0.4042 0.4934 0.4940 0.9988\n9 A <= 8.5 & A > 3.5 1487 0.4957 744 0.4901 743 0.5013 0.4997 0.4940 1.0115\n10 A > 8.5 & C <= 0.494 147 0.0490 81 0.0534 66 0.0445 0.4490 0.4940 0.9089\n11 A > 8.5 & C > 0.494 152 0.0507 78 0.0514 74 0.0499 0.4868 0.4940 0.9855", | ||
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>组合策略</th>\n <th>命中数</th>\n <th>命中率</th>\n <th>好样本数</th>\n <th>好样本占比</th>\n <th>坏样本数</th>\n <th>坏样本占比</th>\n <th>坏率</th>\n <th>样本整体坏率</th>\n <th>LIFT值</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>B <= 0.495 & 时间 > 0.943</td>\n <td>96</td>\n <td>0.0320</td>\n <td>50</td>\n <td>0.0329</td>\n <td>46</td>\n <td>0.0310</td>\n <td>0.4792</td>\n <td>0.4940</td>\n <td>0.9700</td>\n </tr>\n <tr>\n <th>1</th>\n <td>B <= 0.495 & 时间 <= 0.943</td>\n <td>1604</td>\n <td>0.5347</td>\n <td>825</td>\n <td>0.5435</td>\n <td>779</td>\n <td>0.5256</td>\n <td>0.4857</td>\n <td>0.4940</td>\n <td>0.9831</td>\n </tr>\n <tr>\n <th>2</th>\n <td>B > 0.495 & 时间 <= 0.877</td>\n <td>1146</td>\n <td>0.3820</td>\n <td>570</td>\n <td>0.3755</td>\n <td>576</td>\n <td>0.3887</td>\n <td>0.5026</td>\n <td>0.4940</td>\n <td>1.0174</td>\n </tr>\n <tr>\n <th>3</th>\n <td>B > 0.495 & 时间 > 0.877</td>\n <td>154</td>\n <td>0.0513</td>\n <td>73</td>\n <td>0.0481</td>\n <td>81</td>\n <td>0.0547</td>\n <td>0.5260</td>\n <td>0.4940</td>\n <td>1.0647</td>\n </tr>\n <tr>\n <th>4</th>\n <td>B <= 0.495 & A <= 8.5</td>\n <td>1535</td>\n <td>0.5117</td>\n <td>791</td>\n <td>0.5211</td>\n <td>744</td>\n <td>0.5020</td>\n <td>0.4847</td>\n <td>0.4940</td>\n <td>0.9812</td>\n </tr>\n <tr>\n <th>5</th>\n <td>B > 0.495 & A > 4.5</td>\n <td>617</td>\n <td>0.2057</td>\n <td>306</td>\n <td>0.2016</td>\n <td>311</td>\n <td>0.2099</td>\n <td>0.5041</td>\n <td>0.4940</td>\n <td>1.0203</td>\n </tr>\n <tr>\n <th>6</th>\n <td>B > 0.495 & A <= 4.5</td>\n <td>683</td>\n <td>0.2277</td>\n <td>337</td>\n <td>0.2220</td>\n <td>346</td>\n <td>0.2335</td>\n <td>0.5066</td>\n <td>0.4940</td>\n <td>1.0255</td>\n </tr>\n <tr>\n <th>7</th>\n <td>B <= 0.495 & A > 8.5</td>\n <td>165</td>\n <td>0.0550</td>\n <td>84</td>\n <td>0.0553</td>\n <td>81</td>\n <td>0.0547</td>\n <td>0.4909</td>\n <td>0.4940</td>\n <td>0.9937</td>\n </tr>\n <tr>\n <th>8</th>\n <td>A <= 8.5 & A <= 3.5</td>\n <td>1214</td>\n <td>0.4047</td>\n <td>615</td>\n <td>0.4051</td>\n <td>599</td>\n <td>0.4042</td>\n <td>0.4934</td>\n <td>0.4940</td>\n <td>0.9988</td>\n </tr>\n <tr>\n <th>9</th>\n <td>A <= 8.5 & A > 3.5</td>\n <td>1487</td>\n <td>0.4957</td>\n <td>744</td>\n <td>0.4901</td>\n <td>743</td>\n <td>0.5013</td>\n <td>0.4997</td>\n <td>0.4940</td>\n <td>1.0115</td>\n </tr>\n <tr>\n <th>10</th>\n <td>A > 8.5 & C <= 0.494</td>\n <td>147</td>\n <td>0.0490</td>\n <td>81</td>\n <td>0.0534</td>\n <td>66</td>\n <td>0.0445</td>\n <td>0.4490</td>\n <td>0.4940</td>\n <td>0.9089</td>\n </tr>\n <tr>\n <th>11</th>\n <td>A > 8.5 & C > 0.494</td>\n <td>152</td>\n <td>0.0507</td>\n <td>78</td>\n <td>0.0514</td>\n <td>74</td>\n <td>0.0499</td>\n <td>0.4868</td>\n <td>0.4940</td>\n <td>0.9855</td>\n </tr>\n </tbody>\n</table>\n</div>" | ||
}, | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"report[1]" | ||
], | ||
"metadata": { | ||
"collapsed": false | ||
} | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": " 组合策略 命中数 命中率 好样本数 好样本占比 坏样本数 坏样本占比 坏率 样本整体坏率 LIFT值\n0 B <= 0.495 & 时间 > 0.943 242 0.0346 141 0.0398 101 0.0292 0.4174 0.4941 0.8446\n1 B <= 0.495 & 时间 <= 0.943 3759 0.5370 1934 0.5462 1825 0.5276 0.4855 0.4941 0.9825\n2 B > 0.495 & 时间 <= 0.877 2668 0.3811 1320 0.3728 1348 0.3897 0.5052 0.4941 1.0225\n3 B > 0.495 & 时间 > 0.877 331 0.0473 146 0.0412 185 0.0535 0.5589 0.4941 1.1311\n4 B <= 0.495 & A <= 8.5 3605 0.5150 1889 0.5335 1716 0.4961 0.4760 0.4941 0.9633\n5 B > 0.495 & A > 4.5 1496 0.2137 749 0.2115 747 0.2160 0.4993 0.4941 1.0105\n6 B > 0.495 & A <= 4.5 1503 0.2147 717 0.2025 786 0.2272 0.5230 0.4941 1.0583\n7 B <= 0.495 & A > 8.5 396 0.0566 186 0.0525 210 0.0607 0.5303 0.4941 1.0732\n8 A <= 8.5 & A <= 3.5 2772 0.3960 1432 0.4044 1340 0.3874 0.4834 0.4941 0.9783\n9 A <= 8.5 & A > 3.5 3526 0.5037 1775 0.5013 1751 0.5062 0.4966 0.4941 1.0050\n10 A > 8.5 & C <= 0.494 358 0.0511 174 0.0491 184 0.0532 0.5140 0.4941 1.0401\n11 A > 8.5 & C > 0.494 344 0.0491 160 0.0452 184 0.0532 0.5349 0.4941 1.0824", | ||
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>组合策略</th>\n <th>命中数</th>\n <th>命中率</th>\n <th>好样本数</th>\n <th>好样本占比</th>\n <th>坏样本数</th>\n <th>坏样本占比</th>\n <th>坏率</th>\n <th>样本整体坏率</th>\n <th>LIFT值</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>B <= 0.495 & 时间 > 0.943</td>\n <td>242</td>\n <td>0.0346</td>\n <td>141</td>\n <td>0.0398</td>\n <td>101</td>\n <td>0.0292</td>\n <td>0.4174</td>\n <td>0.4941</td>\n <td>0.8446</td>\n </tr>\n <tr>\n <th>1</th>\n <td>B <= 0.495 & 时间 <= 0.943</td>\n <td>3759</td>\n <td>0.5370</td>\n <td>1934</td>\n <td>0.5462</td>\n <td>1825</td>\n <td>0.5276</td>\n <td>0.4855</td>\n <td>0.4941</td>\n <td>0.9825</td>\n </tr>\n <tr>\n <th>2</th>\n <td>B > 0.495 & 时间 <= 0.877</td>\n <td>2668</td>\n <td>0.3811</td>\n <td>1320</td>\n <td>0.3728</td>\n <td>1348</td>\n <td>0.3897</td>\n <td>0.5052</td>\n <td>0.4941</td>\n <td>1.0225</td>\n </tr>\n <tr>\n <th>3</th>\n <td>B > 0.495 & 时间 > 0.877</td>\n <td>331</td>\n <td>0.0473</td>\n <td>146</td>\n <td>0.0412</td>\n <td>185</td>\n <td>0.0535</td>\n <td>0.5589</td>\n <td>0.4941</td>\n <td>1.1311</td>\n </tr>\n <tr>\n <th>4</th>\n <td>B <= 0.495 & A <= 8.5</td>\n <td>3605</td>\n <td>0.5150</td>\n <td>1889</td>\n <td>0.5335</td>\n <td>1716</td>\n <td>0.4961</td>\n <td>0.4760</td>\n <td>0.4941</td>\n <td>0.9633</td>\n </tr>\n <tr>\n <th>5</th>\n <td>B > 0.495 & A > 4.5</td>\n <td>1496</td>\n <td>0.2137</td>\n <td>749</td>\n <td>0.2115</td>\n <td>747</td>\n <td>0.2160</td>\n <td>0.4993</td>\n <td>0.4941</td>\n <td>1.0105</td>\n </tr>\n <tr>\n <th>6</th>\n <td>B > 0.495 & A <= 4.5</td>\n <td>1503</td>\n <td>0.2147</td>\n <td>717</td>\n <td>0.2025</td>\n <td>786</td>\n <td>0.2272</td>\n <td>0.5230</td>\n <td>0.4941</td>\n <td>1.0583</td>\n </tr>\n <tr>\n <th>7</th>\n <td>B <= 0.495 & A > 8.5</td>\n <td>396</td>\n <td>0.0566</td>\n <td>186</td>\n <td>0.0525</td>\n <td>210</td>\n <td>0.0607</td>\n <td>0.5303</td>\n <td>0.4941</td>\n <td>1.0732</td>\n </tr>\n <tr>\n <th>8</th>\n <td>A <= 8.5 & A <= 3.5</td>\n <td>2772</td>\n <td>0.3960</td>\n <td>1432</td>\n <td>0.4044</td>\n <td>1340</td>\n <td>0.3874</td>\n <td>0.4834</td>\n <td>0.4941</td>\n <td>0.9783</td>\n </tr>\n <tr>\n <th>9</th>\n <td>A <= 8.5 & A > 3.5</td>\n <td>3526</td>\n <td>0.5037</td>\n <td>1775</td>\n <td>0.5013</td>\n <td>1751</td>\n <td>0.5062</td>\n <td>0.4966</td>\n <td>0.4941</td>\n <td>1.0050</td>\n </tr>\n <tr>\n <th>10</th>\n <td>A > 8.5 & C <= 0.494</td>\n <td>358</td>\n <td>0.0511</td>\n <td>174</td>\n <td>0.0491</td>\n <td>184</td>\n <td>0.0532</td>\n <td>0.5140</td>\n <td>0.4941</td>\n <td>1.0401</td>\n </tr>\n <tr>\n <th>11</th>\n <td>A > 8.5 & C > 0.494</td>\n <td>344</td>\n <td>0.0491</td>\n <td>160</td>\n <td>0.0452</td>\n <td>184</td>\n <td>0.0532</td>\n <td>0.5349</td>\n <td>0.4941</td>\n <td>1.0824</td>\n </tr>\n </tbody>\n</table>\n</div>" | ||
}, | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"report[2]" | ||
], | ||
"metadata": { | ||
"collapsed": false | ||
} | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"outputs": [], | ||
"source": [], | ||
"metadata": { | ||
"collapsed": false | ||
} | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 2 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython2", | ||
"version": "2.7.6" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 0 | ||
} |
Oops, something went wrong.