Skip to content

Commit

Permalink
Deploy docs to develop by GitHub Actions triggered by 2474fee
Browse files Browse the repository at this point in the history
  • Loading branch information
TeNeS Developers committed Jan 28, 2024
1 parent bf50a0e commit 6379fbd
Show file tree
Hide file tree
Showing 10 changed files with 215 additions and 7 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,8 @@ Define one-body operators that indicate physical quantities defined at each site
``sites``, "Site number", Integer or a list of integer
``dim``, "Dimension of an operator", Integer
``elements``, "Non-zero elements of an operator", String
``coeff``, "Coefficient of operator (real part)", Float
``coeff_im``, "Coefficient of operator (imaginary part)", Float

``name`` specifies an operator name.

Expand All @@ -35,6 +37,9 @@ One element is specified by one line consisting of two integers and two floating
- The first two integers are the state numbers before and after the act of the operator, respectively.
- The latter two floats indicate the real and imaginary parts of the elements of the operator, respectively.

``coeff`` and ``coeff_im`` are real and imaginary parts of the coefficient of the operator, respectively.
If omitted, they are set to 1.0 and 0.0, respectively.

Example
.......

Expand Down Expand Up @@ -93,6 +98,8 @@ Define two-body operators that indicate physical quantities defined on two sites
``dim``, "Dimension of an operator", Integer
``elements``, "Non-zero elements of an operator", String
``ops``, "Index of onesite operators", A list of integer
``coeff``, "Coefficient of operator (real part)", Float
``coeff_im``, "Coefficient of operator (imaginary part)", Float


``name`` specifies an operator name.
Expand Down Expand Up @@ -123,6 +130,9 @@ For example, if :math:`S^z` is defined as ``group = 0`` in ``observable.onesite`

If both ``elements`` and ``ops`` are defined, the process will end in error.

``coeff`` and ``coeff_im`` are real and imaginary parts of the coefficient of the operator, respectively.
If omitted, they are set to 1.0 and 0.0, respectively.

Example
.......

Expand Down Expand Up @@ -193,6 +203,8 @@ It is defined as a direct product of one-body operators defined in ``observable.
``group``, "Identification number of operators", Integer
``multisites``, "Sites", String
``ops``, "Index of onesite operators", List of integers
``coeff``, "Coefficient of operator (real part)", Float
``coeff_im``, "Coefficient of operator (imaginary part)", Float

``name`` specifies an operator name.

Expand All @@ -210,3 +222,5 @@ One line consisting of integers means a set sites.
Using ``ops``, a multi-body operator can be defined as a direct product of the one-body operators defined in ``observable.onesite``.
For example, if :math:`S^z` is defined as ``group = 0`` in ``observable.onesite``, :math:`S^z_i S^z_j S^z_k` can be expressed as ``ops = [0,0,0]``.

``coeff`` and ``coeff_im`` are real and imaginary parts of the coefficient of the operator, respectively.
If omitted, they are set to 1.0 and 0.0, respectively.
30 changes: 30 additions & 0 deletions manual/develop/en/html/file_specification/expert_format.html
Original file line number Diff line number Diff line change
Expand Up @@ -564,6 +564,14 @@ <h3><code class="docutils literal notranslate"><span class="pre">observable.ones
<td><p>Non-zero elements of an operator</p></td>
<td><p>String</p></td>
</tr>
<tr class="row-odd"><td><p><code class="docutils literal notranslate"><span class="pre">coeff</span></code></p></td>
<td><p>Coefficient of operator (real part)</p></td>
<td><p>Float</p></td>
</tr>
<tr class="row-even"><td><p><code class="docutils literal notranslate"><span class="pre">coeff_im</span></code></p></td>
<td><p>Coefficient of operator (imaginary part)</p></td>
<td><p>Float</p></td>
</tr>
</tbody>
</table>
<p><code class="docutils literal notranslate"><span class="pre">name</span></code> specifies an operator name.</p>
Expand All @@ -578,6 +586,8 @@ <h3><code class="docutils literal notranslate"><span class="pre">observable.ones
<li><p>The first two integers are the state numbers before and after the act of the operator, respectively.</p></li>
<li><p>The latter two floats indicate the real and imaginary parts of the elements of the operator, respectively.</p></li>
</ul>
<p><code class="docutils literal notranslate"><span class="pre">coeff</span></code> and <code class="docutils literal notranslate"><span class="pre">coeff_im</span></code> are real and imaginary parts of the coefficient of the operator, respectively.
If omitted, they are set to 1.0 and 0.0, respectively.</p>
<section id="id1">
<h4>Example<a class="headerlink" href="#id1" title="Permalink to this heading"></a></h4>
<p>As an example, the case of <span class="math notranslate nohighlight">\(S^z\)</span> operator for S=1/2</p>
Expand Down Expand Up @@ -651,6 +661,14 @@ <h3><code class="docutils literal notranslate"><span class="pre">observable.twos
<td><p>Index of onesite operators</p></td>
<td><p>A list of integer</p></td>
</tr>
<tr class="row-even"><td><p><code class="docutils literal notranslate"><span class="pre">coeff</span></code></p></td>
<td><p>Coefficient of operator (real part)</p></td>
<td><p>Float</p></td>
</tr>
<tr class="row-odd"><td><p><code class="docutils literal notranslate"><span class="pre">coeff_im</span></code></p></td>
<td><p>Coefficient of operator (imaginary part)</p></td>
<td><p>Float</p></td>
</tr>
</tbody>
</table>
<p><code class="docutils literal notranslate"><span class="pre">name</span></code> specifies an operator name.</p>
Expand Down Expand Up @@ -680,6 +698,8 @@ <h3><code class="docutils literal notranslate"><span class="pre">observable.twos
<p>Using <code class="docutils literal notranslate"><span class="pre">ops</span></code>, a two-body operator can be defined as a direct product of the one-body operators defined in <code class="docutils literal notranslate"><span class="pre">observable.onesite</span></code>.
For example, if <span class="math notranslate nohighlight">\(S^z\)</span> is defined as <code class="docutils literal notranslate"><span class="pre">group</span> <span class="pre">=</span> <span class="pre">0</span></code> in <code class="docutils literal notranslate"><span class="pre">observable.onesite</span></code>, <span class="math notranslate nohighlight">\(S ^ z_iS ^ z_j\)</span> can be expressed as <code class="docutils literal notranslate"><span class="pre">ops</span> <span class="pre">=</span> <span class="pre">[0,0]</span></code>.</p>
<p>If both <code class="docutils literal notranslate"><span class="pre">elements</span></code> and <code class="docutils literal notranslate"><span class="pre">ops</span></code> are defined, the process will end in error.</p>
<p><code class="docutils literal notranslate"><span class="pre">coeff</span></code> and <code class="docutils literal notranslate"><span class="pre">coeff_im</span></code> are real and imaginary parts of the coefficient of the operator, respectively.
If omitted, they are set to 1.0 and 0.0, respectively.</p>
<section id="id2">
<h4>Example<a class="headerlink" href="#id2" title="Permalink to this heading"></a></h4>
<p>As an example, for the calculation of the energy of the bond Hamiltonian for S=1/2 Heisenberg model on square lattice at <code class="docutils literal notranslate"><span class="pre">Lsub=[2,2]</span></code> , the way to define two site operators (equal to the Hamiltonian)</p>
Expand Down Expand Up @@ -762,6 +782,14 @@ <h3><code class="docutils literal notranslate"><span class="pre">observable.mult
<td><p>Index of onesite operators</p></td>
<td><p>List of integers</p></td>
</tr>
<tr class="row-even"><td><p><code class="docutils literal notranslate"><span class="pre">coeff</span></code></p></td>
<td><p>Coefficient of operator (real part)</p></td>
<td><p>Float</p></td>
</tr>
<tr class="row-odd"><td><p><code class="docutils literal notranslate"><span class="pre">coeff_im</span></code></p></td>
<td><p>Coefficient of operator (imaginary part)</p></td>
<td><p>Float</p></td>
</tr>
</tbody>
</table>
<p><code class="docutils literal notranslate"><span class="pre">name</span></code> specifies an operator name.</p>
Expand All @@ -779,6 +807,8 @@ <h3><code class="docutils literal notranslate"><span class="pre">observable.mult
</ul>
<p>Using <code class="docutils literal notranslate"><span class="pre">ops</span></code>, a multi-body operator can be defined as a direct product of the one-body operators defined in <code class="docutils literal notranslate"><span class="pre">observable.onesite</span></code>.
For example, if <span class="math notranslate nohighlight">\(S^z\)</span> is defined as <code class="docutils literal notranslate"><span class="pre">group</span> <span class="pre">=</span> <span class="pre">0</span></code> in <code class="docutils literal notranslate"><span class="pre">observable.onesite</span></code>, <span class="math notranslate nohighlight">\(S^z_i S^z_j S^z_k\)</span> can be expressed as <code class="docutils literal notranslate"><span class="pre">ops</span> <span class="pre">=</span> <span class="pre">[0,0,0]</span></code>.</p>
<p><code class="docutils literal notranslate"><span class="pre">coeff</span></code> and <code class="docutils literal notranslate"><span class="pre">coeff_im</span></code> are real and imaginary parts of the coefficient of the operator, respectively.
If omitted, they are set to 1.0 and 0.0, respectively.</p>
</section>
</section>
<section id="evolution-section">
Expand Down
30 changes: 30 additions & 0 deletions manual/develop/en/html/file_specification/observable_section.html
Original file line number Diff line number Diff line change
Expand Up @@ -68,6 +68,14 @@ <h1><code class="docutils literal notranslate"><span class="pre">observable.ones
<td><p>Non-zero elements of an operator</p></td>
<td><p>String</p></td>
</tr>
<tr class="row-odd"><td><p><code class="docutils literal notranslate"><span class="pre">coeff</span></code></p></td>
<td><p>Coefficient of operator (real part)</p></td>
<td><p>Float</p></td>
</tr>
<tr class="row-even"><td><p><code class="docutils literal notranslate"><span class="pre">coeff_im</span></code></p></td>
<td><p>Coefficient of operator (imaginary part)</p></td>
<td><p>Float</p></td>
</tr>
</tbody>
</table>
<p><code class="docutils literal notranslate"><span class="pre">name</span></code> specifies an operator name.</p>
Expand All @@ -82,6 +90,8 @@ <h1><code class="docutils literal notranslate"><span class="pre">observable.ones
<li><p>The first two integers are the state numbers before and after the act of the operator, respectively.</p></li>
<li><p>The latter two floats indicate the real and imaginary parts of the elements of the operator, respectively.</p></li>
</ul>
<p><code class="docutils literal notranslate"><span class="pre">coeff</span></code> and <code class="docutils literal notranslate"><span class="pre">coeff_im</span></code> are real and imaginary parts of the coefficient of the operator, respectively.
If omitted, they are set to 1.0 and 0.0, respectively.</p>
<section id="example">
<h2>Example<a class="headerlink" href="#example" title="Permalink to this heading"></a></h2>
<p>As an example, the case of <span class="math notranslate nohighlight">\(S^z\)</span> operator for S=1/2</p>
Expand Down Expand Up @@ -155,6 +165,14 @@ <h1><code class="docutils literal notranslate"><span class="pre">observable.twos
<td><p>Index of onesite operators</p></td>
<td><p>A list of integer</p></td>
</tr>
<tr class="row-even"><td><p><code class="docutils literal notranslate"><span class="pre">coeff</span></code></p></td>
<td><p>Coefficient of operator (real part)</p></td>
<td><p>Float</p></td>
</tr>
<tr class="row-odd"><td><p><code class="docutils literal notranslate"><span class="pre">coeff_im</span></code></p></td>
<td><p>Coefficient of operator (imaginary part)</p></td>
<td><p>Float</p></td>
</tr>
</tbody>
</table>
<p><code class="docutils literal notranslate"><span class="pre">name</span></code> specifies an operator name.</p>
Expand Down Expand Up @@ -184,6 +202,8 @@ <h1><code class="docutils literal notranslate"><span class="pre">observable.twos
<p>Using <code class="docutils literal notranslate"><span class="pre">ops</span></code>, a two-body operator can be defined as a direct product of the one-body operators defined in <code class="docutils literal notranslate"><span class="pre">observable.onesite</span></code>.
For example, if <span class="math notranslate nohighlight">\(S^z\)</span> is defined as <code class="docutils literal notranslate"><span class="pre">group</span> <span class="pre">=</span> <span class="pre">0</span></code> in <code class="docutils literal notranslate"><span class="pre">observable.onesite</span></code>, <span class="math notranslate nohighlight">\(S ^ z_iS ^ z_j\)</span> can be expressed as <code class="docutils literal notranslate"><span class="pre">ops</span> <span class="pre">=</span> <span class="pre">[0,0]</span></code>.</p>
<p>If both <code class="docutils literal notranslate"><span class="pre">elements</span></code> and <code class="docutils literal notranslate"><span class="pre">ops</span></code> are defined, the process will end in error.</p>
<p><code class="docutils literal notranslate"><span class="pre">coeff</span></code> and <code class="docutils literal notranslate"><span class="pre">coeff_im</span></code> are real and imaginary parts of the coefficient of the operator, respectively.
If omitted, they are set to 1.0 and 0.0, respectively.</p>
<section id="id1">
<h2>Example<a class="headerlink" href="#id1" title="Permalink to this heading"></a></h2>
<p>As an example, for the calculation of the energy of the bond Hamiltonian for S=1/2 Heisenberg model on square lattice at <code class="docutils literal notranslate"><span class="pre">Lsub=[2,2]</span></code> , the way to define two site operators (equal to the Hamiltonian)</p>
Expand Down Expand Up @@ -266,6 +286,14 @@ <h1><code class="docutils literal notranslate"><span class="pre">observable.mult
<td><p>Index of onesite operators</p></td>
<td><p>List of integers</p></td>
</tr>
<tr class="row-even"><td><p><code class="docutils literal notranslate"><span class="pre">coeff</span></code></p></td>
<td><p>Coefficient of operator (real part)</p></td>
<td><p>Float</p></td>
</tr>
<tr class="row-odd"><td><p><code class="docutils literal notranslate"><span class="pre">coeff_im</span></code></p></td>
<td><p>Coefficient of operator (imaginary part)</p></td>
<td><p>Float</p></td>
</tr>
</tbody>
</table>
<p><code class="docutils literal notranslate"><span class="pre">name</span></code> specifies an operator name.</p>
Expand All @@ -283,6 +311,8 @@ <h1><code class="docutils literal notranslate"><span class="pre">observable.mult
</ul>
<p>Using <code class="docutils literal notranslate"><span class="pre">ops</span></code>, a multi-body operator can be defined as a direct product of the one-body operators defined in <code class="docutils literal notranslate"><span class="pre">observable.onesite</span></code>.
For example, if <span class="math notranslate nohighlight">\(S^z\)</span> is defined as <code class="docutils literal notranslate"><span class="pre">group</span> <span class="pre">=</span> <span class="pre">0</span></code> in <code class="docutils literal notranslate"><span class="pre">observable.onesite</span></code>, <span class="math notranslate nohighlight">\(S^z_i S^z_j S^z_k\)</span> can be expressed as <code class="docutils literal notranslate"><span class="pre">ops</span> <span class="pre">=</span> <span class="pre">[0,0,0]</span></code>.</p>
<p><code class="docutils literal notranslate"><span class="pre">coeff</span></code> and <code class="docutils literal notranslate"><span class="pre">coeff_im</span></code> are real and imaginary parts of the coefficient of the operator, respectively.
If omitted, they are set to 1.0 and 0.0, respectively.</p>
</section>


Expand Down
Loading

0 comments on commit 6379fbd

Please sign in to comment.