Jandex is a space efficient Java annotation indexer and offline reflection library.
It supports the following capabilities:
- Indexing all runtime visible Java annotations for a set of classes into a memory efficient representation.
- Indexing the class hierarchy and interface implementation of a set classes.
- Browsing and searching of declared methods on an indexed class.
- Browsing and searching of declared fields on an indexed class.
- Browsing of all generic type information on methods, fields, and classes.
- Browsing and searching annotations, including Java 8 type annotations
- Persisting an index into a custom storage efficient format.
- Quick-loading of the storage efficient format
- Compatibility with previous API and storage format versions
- Execution via an API, a command line tool, and ant
Jandex artifacts can be downloaded off of maven central.
The extensive API docs for Jandex are available here.
Issues can be reported in the Jandex JIRA Project,
Post to the [WildFly user forums for help] (https://developer.jboss.org/en/wildfly?view=discussions).
The following example demonstrates indexing hibernate core, followed by the entire Java JDK using Jandex on the CLI:
$ java -jar target/jandex-2.0.0.Alpha1.jar hibernate-core-4.0.0.Final.jar
Wrote /Users/jason/devel/jandex/hibernate-core-4.0.0.Final-jar.idx in 0.9020 seconds
(2722 classes, 20 annotations, 1696 instances, 621565 bytes)
$ java -jar target/jandex-2.0.0.Alpha1.jar rt.jar
Wrote /Users/jason/devel/jandex/rt-jar.idx in 4.2870 seconds
(19831 classes, 41 annotations, 1699 instances, 4413790 bytes)
The above summary output tells us that this version of hibernate has 2,722 classes, and those classes contained 1,696 annotation declarations, using 20 different annotation types. The resulting index is 606KB uncompressed, which is only 14% of the 4.1MB compressed jar size, or 4% of the uncompressed class file data. If the index is stored in the jar (using the -m option) it can be compressed an additional 47%, leading to a jar growth of only 8%
Just add the following to your pom:
<dependency>
<groupId>org.jboss</groupId>
<artifactId>jandex</artifactId>
<version>2.0.1.Final</version>
</dependency>
The following ant task can be used with either the maven antrun-plugin or an ant build to build an index for your project:
<taskdef name="jandex" classname="org.jboss.jandex.JandexAntTask" />
<jandex run="@{jandex}>
<fileset dir="${location.to.index.dir}" />
</jandex>
The following example demonstrates indexing a class and browsing its methods:
// Index java.util.Map
Indexer indexer = new Indexer();
// Normally a direct file is opened, but class-loader backed streams work as well.
InputStream stream = getClass().getClassLoader()
.getResourceAsStream("java/util/Map.class");
indexer.index(stream);
Index index = indexer.complete();
// Retrieve Map from the index and print its declared methods
ClassInfo clazz = index.getClassByName(DotName.createSimple("java.util.Map"));
for (MethodInfo method : clazz.methods()) {
System.out.println(method);
}
The following example demonstrates indexing a class and persisting the index to disk. The resulting file can later be loaded scanning Java classes:
// Index java.util.Map
Indexer indexer = new Indexer();
// Normally a direct file is opened, but class-loader backed streams work as well.
InputStream stream = getClass().getClassLoader()
.getResourceAsStream("java/util/Map.class");
indexer.index(stream);
Index index = indexer.complete();
FileOutputStream out = new FileOutputStream("/tmp/index.idx");
IndexWriter writer = new IndexWriter(out);
try {
writer.write(index);
} finally {
safeClose(out);
}
The following example demonstrates loading the index from the previous example and using that
index to print all methods on java.util.Map
:
FileInputStream input = new FileInputStream("/tmp/index.idx");
IndexReader reader = new IndexReader(input);
try {
index = reader.read();
} finally {
safeClose(input);
}
// Retrieve Map from the index and print its declared methods
ClassInfo clazz = index.getClassByName(DotName.createSimple("java.util.Map"));
for (MethodInfo method : clazz.methods()) {
System.out.println(method);
}
The following example demonstrates indexing the Thread and String classes, and searching for methods that have been marked with @Deprecated:
Indexer indexer = new Indexer();
InputStream stream = getClass().getClassLoader()
.getResourceAsStream("java/lang/Thread.class");
indexer.index(stream);
stream = getClass().getClassLoader()
.getResourceAsStream("java/lang/String.class");
indexer.index(stream);
Index index = indexer.complete();
DotName deprecated = DotName.createSimple("java.lang.Deprecated");
List<AnnotationInstance> annotations = index.getAnnotations(deprecated);
for (AnnotationInstance annotation : annotations) {
switch (annotation.target().kind()) {
case METHOD:
System.out.println(annotation.target());
break;
}
}
The following example demonstrates indexing the Collections class and printing the resolved bound on the List method parameter, which resolves to Comparable from the method type parameter.
The sort() method analyzed by the example is defined in source as:
public static <T extends Comparable<? super T>> void sort(List<T> list)
The example code, which prints "Comparable<? super T>", followed by "T" is:
Indexer indexer = new Indexer();
InputStream stream = getClass().getClassLoader()
.getResourceAsStream("java/util/Collections.class");
indexer.index(stream);
Index index = indexer.complete();
// Find method
ClassInfo clazz = index.getClassByName(DotName.createSimple("java.util.Collections"));
Type listType = Type.create(DotName.createSimple("java.util.List"), Type.Kind.CLASS);
MethodInfo sort = clazz.method("sort", listType);
Type t =
sort.parameters().get(0).asParameterizedType() // List<T extends Comparable<? super T>>
.arguments().get(0) // T extends Comparable<? super T>
.asTypeVariable().bounds().get(0); // Comparable<? super T>
System.out.println(t);
System.out.println(t.asWildcardType().superBound()); // T
Consider a complex nested generic structure which contains a @Label annotation
Map<Integer, List<@Label("Name") String>> names
The following code will print "Name", the annotation value associated with the type:
Indexer indexer = new Indexer();
InputStream stream = new FileInputStream("/tmp/Test.class");
indexer.index(stream);
stream = new FileInputStream("/tmp/Test$Label.class");
indexer.index(stream);
Index index = indexer.complete();
DotName test = DotName.createSimple("Test");
FieldInfo field = index.getClassByName(test).field("names");
System.out.println(
field.type().asParameterizedType().arguments().get(1)
.asParameterizedType().arguments().get(0)
.annotations().get(0).value().asString()
);
A type annotation can also be located by searching for the annotation. The target for a found type annotation is represented as a TypeTarget. The TypeTarget provides a reference to the annotated type, as well as the enclosing target that contains the type. The target itself can be a method, a class, or a field. The usage on that target can be a number of places, including parameters, return types, type parameters, type arguments, class extends values, type bounds and receiver types. Subclasses of TypeTarget provide the necessary information to locate the starting point of the usage.
Since the particular type use can occur at any depth, the relevant branch of the type tree constrained by the above starting point must be traversed to understand the context of the use.
Consider a complex nested generic structure which contains a @Label annotation:
Map<Integer, List<@Label("Name") String>> names
The following code locates a type annotation using a hardcoded path:
Indexer indexer = new Indexer();
InputStream stream = new FileInputStream("/tmp/Test.class");
indexer.index(stream);
stream = new FileInputStream("/tmp/Test$Label.class");
indexer.index(stream);
Index index = indexer.complete();
DotName label DotName.createSimple("Test$Label");
List<AnnotationInstance> annotations = index.getAnnotations(label);
for (AnnotationInstance annotation : annotations) {
if (annotation.target().kind() == AnnotationTarget.Kind.TYPE) {
TypeTarget typeTarget = annotation.target().asType();
System.out.println("Type usage is located within: " + typeTarget.enclosingTarget());
System.out.println("Usage type: " + typeTarget.usage());
System.out.println("Target type:" + typeTarget.target());
System.out.println("Equivalent? " + (typeTarget.enclosingTarget().asField().type()
.asParameterizedType().arguments().get(1)
.asParameterizedType().arguments().get(0)
== typeTarget.target()));
}
The above code prints the following output:
Type usage is located within: java.util.Map<java.lang.Integer,
java.util.List<@Label(value = "Name") java.lang.String>>
Test.names
Usage type: EMPTY
Target type:@Label(value = "Name") java.lang.String
Equivalent? true
Jandex uses an X.Y.Z
versioning scheme.
In the following text, we call X
a major version, Y
a minor version, and Z
a micro version.
Jandex may break backward compatibility for callers of the Jandex API in major versions. If you only call Jandex API, updating to a newer minor or micro version is safe.
Jandex may break backward compatibility for users that extend Jandex classes or implement Jandex interfaces in minor or major versions. If you extend Jandex classes or implement Jandex interfaces, updating to a newer micro version is safe.
The persistent index format is versioned. Jandex is backward compatible when it comes to reading the persistent index, but not forward compatible. In other words, newer Jandex can read older index, but older Jandex can't read newer index.
Jandex may introduce a new persistent index format version in minor or major versions. If you distribute a Jandex index as part of your artifacts, updating to a newer micro version is safe. Updating to a newer minor or major version may require consumers of the Jandex index to also update.