Talos is a dataflow analysis and scheduling tool for deep learning applications. It has already be accepted by ASAP 21
Yuanjia XU, Heng WU*, Wenbo ZHANG, Tao WANG, Chen YANG, Heran GAO. Talos: A Weighted Speedup-Aware Device Placement of Deep Learning Models. The 32nd IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP 2021). 101-108
Talos paper can be found here.
This work is supported in part by National Key R&D Program of China (No. 2018YFB1402503), National Natural Science Foundation of China (No. 61872344) and Youth Innovation Promotion Association of Chinese Academy of Sciences Fund (No. 2018144).
click here to see pytorch operator chrome tracing
click here to see tensorflow operator chrome tracing
click here to see operator speedup awareness scheudling
ctrl+shift+p: open user settings
copy and change path:
{
"python.autoComplete.addBrackets": true,
"python.autoComplete.extraPaths": [
// "/root/anaconda3/envs/xyj_pytorch",
// "/root/anaconda3/envs/xyj_pytorch/lib/python38.zip",
// "/root/anaconda3/envs/xyj_pytorch/lib/python3.8",
// "/root/anaconda3/envs/xyj_pytorch/lib/python3.8/lib-dynload",
// "/root/anaconda3/envs/xyj_pytorch/lib/python3.8/site-packages",
"/root/anaconda3/envs/d2l",
"/root/anaconda3/envs/d2l/lib/python38.zip",
"/root/anaconda3/envs/d2l/lib/python3.8",
"/root/anaconda3/envs/d2l/lib/python3.8/lib-dynload",
"/root/anaconda3/envs/d2l/lib/python3.8/site-packages"
]
}
export PYTHONPATH=/root/d2l-en/mxnet 或 pip install d2l==0.13.2 -f https://d2l.ai/whl.html
pip install ipython
pip install pandas
pip install ipykernel
- 机器学习的过程:优化和泛化
- 计算图可以标记常量,避免全部微分,也能够控制微分分支