Code files to accompany the paper "ECG-based Real-time Arrhythmia Monitoring Using Quantized Deep Neural Networks: A Feasibility Study". For more details about this study, please visit: https://intsav.github.io/realtime_ecg.html
Clone this repository
git clone [email protected]:intsav/RealtimeArrhythmiaMonitoring
Install virtualenv
pip3 install virtualenv
Create and activate Python 3.7 environment
virtualenv -p python3.7
Install requirements
./setup.sh
In the root directory create a new directories called model and data
mkdir {models,data}
Fetch and save dataset
wget --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id=1KIBxRB12tbEop02Dj_sLBuZvPgu3ua6e' -O- | sed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\1\n/p')&id=1KIBxRB12tbEop02Dj_sLBuZvPgu3ua6e" -O data/mitdb_360_train.csv && rm -rf /tmp/cookies.txt wget --no-check-certificate 'https://docs.google.com/uc?export=download&id=1epF6BHCrTUOrpILBUp4xg160guVy_Jsr' -O data/mitdb_360_test.csv
Run the following command from the root directory
python3 code/train.py
At each epoch the model is saved in models directory.
Run the following command from the root directory by selecting your best model
python3 code/test.py --model models/**FILENAME**
Download quantized weights
wget --no-check-certificate 'https://docs.google.com/uc?export=download&id=1pY--6B4xNpcEMixEEwVgoD1h5AVvk2pW' -O models/ecg_quant.tflite
Test quantized model
python3 code/test_quant.py