Skip to content

Commit

Permalink
Handle non-int age in sales_fraction_annual()
Browse files Browse the repository at this point in the history
  • Loading branch information
khaeru committed Aug 19, 2024
1 parent 78d5bec commit 672a022
Show file tree
Hide file tree
Showing 2 changed files with 83 additions and 12 deletions.
65 changes: 56 additions & 9 deletions message_ix_models/model/transport/operator.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
import logging
import re
from functools import partial, reduce
from itertools import product
from itertools import pairwise, product
from operator import gt, le, lt
from typing import (
TYPE_CHECKING,
Expand All @@ -26,6 +26,7 @@
from genno import Computer, KeySeq, Operator, quote
from genno.operator import apply_units, rename_dims
from genno.testing import assert_qty_allclose, assert_units
from scipy import integrate
from sdmx.model.v21 import Code

from message_ix_models import ScenarioInfo
Expand Down Expand Up @@ -813,20 +814,66 @@ def relabel2(qty: "AnyQuantity", new_dims: dict):
return result


def uniform_in_dim(value: "AnyQuantity", dim: str = "y") -> "AnyQuantity":
"""Construct a uniform distribution from `value` along its :math:`y`-dimension.
`value` must have a dimension `dim` with length 1 and a single value, :math:`k`. The
sole `dim`-coordinate is taken as :math:`d_{max}`: the upper end of a uniform
distribution of which the mean is :math:`d_{max} - k`.
Returns
-------
genno.Quantity
with dimension `dim`, and `dim` coordinates including all integer values up to
and including :math:`d_{max}`. Values are the piecewise integral of the uniform
distribution in the interval ending at the respective coordinate.
"""
d_max = value.coords[dim].item() # Upper end of the distribution
width = 2 * value.item() # Width of a uniform distribution
height = 1.0 / width # Height of the distribution
d_min = d_max - width # Lower end of the distribution

def _uniform(x: float) -> float:
"""Uniform distribution between `d_min` and `d_max`."""
return height if d_min < x < d_max else 0.0

# Points for piecewise integration of `_uniform`: integers from the first <= d_min
# to d_max inclusive
points = np.arange(np.floor(d_min), d_max + 1).astype(int)

# - Group `points` pairwise: (d0, d1), (d1, d2)
# - On each interval, compute the integral of _uniform() by quadrature.
# - Convert to Quantity with y-dimension, labelled with interval upper bounds.
return genno.Quantity(
pd.Series(
{b: integrate.quad(_uniform, a, b)[0] for a, b in pairwise(points)}
).rename_axis(dim),
units="",
)


def sales_fraction_annual(age: "AnyQuantity") -> "AnyQuantity":
"""Return fractions of current stock that should be sold in prior years."""
"""Return fractions of current vehicle stock that should be added in prior years.
def _(value: int):
"""Produce the sales fractions for a scalar `value`."""
N = 2 * value.item() # Number of periods
y0 = value.coords["y"].item() # Initial period
coords = dict(y=range(y0 + 1 - N, y0 + 1)) # Periods included
return genno.Quantity([1.0 / N] * N, coords=coords, units="")
Parameters
---
age : genno.Quantity
Mean age of vehicle stock. Must have dimension "y" and at least 1 other
dimension. For every unique combination of those other dimensions, there must be
only one value/|y|-coordinate. This is taken as the *rightmost* end of a uniform
distribution with mean age given by the respective value.
Returns
-------
genno.Quantity
Same dimensionality as `age`, with sufficient |y| coordinates to cover all years
in which. Every integer year is included, i.e. the result is **not** aggregated
to multi-year periods (called ``year`` in MESSAGE).
"""
# - Group by all dims other than `y`.
# - Apply the function to each scalar value.
dims = list(filter(lambda d: d != "y", age.dims))
return age.groupby(dims).apply(_)
return age.groupby(dims).apply(uniform_in_dim)


def share_weight(
Expand Down
30 changes: 27 additions & 3 deletions message_ix_models/tests/model/transport/test_operator.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
import genno
import numpy.testing as npt
import pytest
from genno import Quantity
from genno.testing import assert_qty_equal
from message_ix import Scenario
from numpy.testing import assert_allclose
Expand All @@ -11,6 +12,7 @@
distance_nonldv,
factor_input,
factor_ssp,
sales_fraction_annual,
transport_check,
)
from message_ix_models.model.transport.structure import get_technology_groups
Expand Down Expand Up @@ -69,7 +71,7 @@ def test_distance_nonldv(test_context, regions):

# Check a computed value
assert_qty_equal(
Quantity(32.7633, units="Mm / vehicle / year", name="non-ldv distance"),
genno.Quantity(32.7633, units="Mm / vehicle / year", name="non-ldv distance"),
result.sel(nl=f"{regions}_EEU", t="BUS", drop=True),
)

Expand Down Expand Up @@ -131,8 +133,30 @@ def test_factor_ssp(test_context, ssp: SSP_2024) -> None:
assert {"n", "y"} == set(result.dims)


def test_sales_fraction_annual():
q = genno.Quantity(
[[12.4, 6.1]], coords={"y": [2020], "n": list("AB")}, units="year"
)

result = sales_fraction_annual(q)

# Result has same dimensions as input
assert set(q.dims) == set(result.dims)
# Results are bounded in y at the last period given in input
assert 2020 == max(q.coords["y"])
# Results sum to 1.0
npt.assert_allclose([1.0, 1.0], result.sum(dim="y"))

# Values for earlier periods are uniform…
assert result.sel(n="A", y=1997).item() == result.sel(n="A", y=2020).item()
assert result.sel(n="B", y=2009).item() == result.sel(n="B", y=2020).item()
# Except the earliest period, containing the remainder of the distribution
assert result.sel(n="A", y=1996).item() <= result.sel(n="A", y=2020).item()
assert result.sel(n="B", y=2008).item() <= result.sel(n="B", y=2020).item()


@pytest.mark.xfail(reason="Incomplete test")
def test_transport_check(test_context):
s = Scenario(test_context.get_platform(), model="m", scenario="s", version="new")

transport_check(s, Quantity())
transport_check(s, genno.Quantity())

0 comments on commit 672a022

Please sign in to comment.