Adding flux weighting option to the effective_area function of Weighter objects #231
GitHub Actions / Test Results
failed
Dec 12, 2024 in 0s
1 fail, 1 skipped, 102 pass in 1m 33s
4 files 4 suites 1m 33s ⏱️
104 tests 102 ✅ 1 💤 1 ❌
416 runs 408 ✅ 4 💤 4 ❌
Results for commit 2b838bb.
Annotations
Check warning on line 0 in tests.test_weighter.TestWeighter
github-actions / Test Results
All 4 runs failed: test_effective_area (tests.test_weighter.TestWeighter)
test-results-macos-latest-3.13.junit.xml [took 0s]
test-results-ubuntu-24.04-3.10.junit.xml [took 0s]
test-results-ubuntu-24.04-3.11.junit.xml [took 0s]
test-results-ubuntu-24.04-3.9.junit.xml [took 0s]
Raw output
ValueError: only scalar flux or cosmic ray flux models are supported right now
self = <test_weighter.TestWeighter testMethod=test_effective_area>
def test_effective_area(self):
self.assertAlmostEqual(
self.weighter1.effective_area([5e5, 5e6], [0, 1])[0][0],
self.c1.etendue / 2e4 / np.pi,
6,
)
self.assertAlmostEqual(
> self.weighter1.effective_area([5e5, 5e6], [0, 1], np.ones(self.N1, dtype=bool))[0][0],
self.c1.etendue / 2e4 / np.pi,
6,
)
tests/test_weighter.py:202:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
self = <simweights._weighter.Weighter object at 0x7f393c383c90>
energy_bins = array([ 500000., 5000000.]), cos_zenith_bins = array([0, 1])
flux = array([ True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True])
mask = None
def effective_area(
self: Weighter,
energy_bins: ArrayLike,
cos_zenith_bins: ArrayLike,
flux: Any = 1e-4, # default is 1 GeV^-1 m^-2 sr^-1 flux
mask: ArrayLike | None = None,
) -> NDArray[np.float64]:
r"""Calculate The effective area for the given energy and zenith bins.
This is accomplished by histogramming the generation surface the simulation sample
in energy and zenith bins and dividing by the size of the energy and solid angle of each bin.
If mask is passed as a parameter, only events which are included in the mask are used.
Effective areas are given units of :math:`\mathrm{m}^2`
.. Note ::
If the sample contains more than one type of primary particle, then the result will be
averaged over the number of particles. This is usually what you want. However, it can
cause strange behavior if there is a small number of one type. In this case, the mask
should be used to select the particle types individually.
Args:
energy_bins : array_like
A length N+1 array of energy bin edges
cos_zenith_bins : array_like
A length M+1 array of cos(zenith) bin edges
mask: array_like
boolean array where 1 indicates to use the event in the calculation.
Must have the same length as the simulation sample.
Returns:
array_like
An NxM array of effective areas. Where N is the number of energy bins and M
is the number of cos(zenith) bins.
"""
energy_bins = np.array(energy_bins)
cos_zenith_bins = np.array(cos_zenith_bins)
assert energy_bins.ndim == 1
assert cos_zenith_bins.ndim == 1
assert len(energy_bins) >= 2 # noqa: PLR2004
assert len(cos_zenith_bins) >= 2 # noqa: PLR2004
energy = self.get_weight_column("energy")
cos_zen = self.get_weight_column("cos_zen")
weights = self.get_weights(flux)
maska = np.full(weights.size, 1, dtype=bool) if mask is None else np.asarray(mask, dtype=bool)
assert maska.shape == weights.shape
hist_val, czbin, enbin = np.histogram2d(
cos_zen[maska],
energy[maska],
weights=weights[maska],
bins=[cos_zenith_bins, energy_bins],
)
nspecies = len(np.unique(self.get_weight_column("pdgid")[maska]))
assert np.array_equal(enbin, energy_bins)
assert np.array_equal(czbin, cos_zenith_bins)
if np.isscalar(flux):
e_width, z_width = np.meshgrid(np.ediff1d(enbin), np.ediff1d(czbin))
return np.asarray(hist_val / (e_width * 2 * np.pi * z_width * nspecies), dtype=np.float64)
elif callable(flux):
flux_pdgids = [pdgid.value for pdgid in flux.pdgids]
flux_func = lambda E: sum([flux._funcs[flux_pdgids.index(np.unique(self.get_weight_column("pdgid")[maska])[i_species])](E) for i_species in range(nspecies)])
from scipy.integrate import quad
flux_integrals = np.asarray([quad(flux_func, energy_bins[bin_index], energy_bins[bin_index+1])[0] for bin_index in range(len(energy_bins)-1)])
e_width, z_width = np.meshgrid(flux_integrals, np.ediff1d(czbin))
return np.asarray(1e-4 * hist_val / (e_width * 2 * np.pi * z_width), dtype=np.float64)
else:
> raise ValueError("only scalar flux or cosmic ray flux models are supported right now")
E ValueError: only scalar flux or cosmic ray flux models are supported right now
/opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages/simweights/_weighter.py:213: ValueError
Loading