forked from deepmodeling/deepmd-kit
-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Feat: add se_r descriptor (deepmodeling#3338)
This PR is to support `se_r` descriptor in pytorch and numpy. - [x] Refactor Pytorch env_mat: possibly combine `r` and `a`. - [x] Add numpy implementation. - [x] Add consistency test with `tf`. - [x] Refactor device as parameter --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
- Loading branch information
1 parent
254afc8
commit c538d04
Showing
17 changed files
with
1,175 additions
and
75 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,321 @@ | ||
# SPDX-License-Identifier: LGPL-3.0-or-later | ||
import numpy as np | ||
|
||
from deepmd.utils.path import ( | ||
DPPath, | ||
) | ||
|
||
try: | ||
from deepmd._version import version as __version__ | ||
except ImportError: | ||
__version__ = "unknown" | ||
|
||
import copy | ||
from typing import ( | ||
Any, | ||
List, | ||
Optional, | ||
) | ||
|
||
from deepmd.dpmodel import ( | ||
DEFAULT_PRECISION, | ||
PRECISION_DICT, | ||
NativeOP, | ||
) | ||
from deepmd.dpmodel.utils import ( | ||
EmbeddingNet, | ||
EnvMat, | ||
NetworkCollection, | ||
PairExcludeMask, | ||
) | ||
from deepmd.env import ( | ||
GLOBAL_NP_FLOAT_PRECISION, | ||
) | ||
|
||
from .base_descriptor import ( | ||
BaseDescriptor, | ||
) | ||
|
||
|
||
@BaseDescriptor.register("se_e2_r") | ||
@BaseDescriptor.register("se_r") | ||
class DescrptSeR(NativeOP, BaseDescriptor): | ||
r"""DeepPot-SE_R constructed from only the radial imformation of atomic configurations. | ||
Parameters | ||
---------- | ||
rcut | ||
The cut-off radius :math:`r_c` | ||
rcut_smth | ||
From where the environment matrix should be smoothed :math:`r_s` | ||
sel : list[str] | ||
sel[i] specifies the maxmum number of type i atoms in the cut-off radius | ||
neuron : list[int] | ||
Number of neurons in each hidden layers of the embedding net :math:`\mathcal{N}` | ||
resnet_dt | ||
Time-step `dt` in the resnet construction: | ||
y = x + dt * \phi (Wx + b) | ||
trainable | ||
If the weights of embedding net are trainable. | ||
type_one_side | ||
Try to build N_types embedding nets. Otherwise, building N_types^2 embedding nets | ||
exclude_types : List[List[int]] | ||
The excluded pairs of types which have no interaction with each other. | ||
For example, `[[0, 1]]` means no interaction between type 0 and type 1. | ||
set_davg_zero | ||
Set the shift of embedding net input to zero. | ||
activation_function | ||
The activation function in the embedding net. Supported options are |ACTIVATION_FN| | ||
precision | ||
The precision of the embedding net parameters. Supported options are |PRECISION| | ||
multi_task | ||
If the model has multi fitting nets to train. | ||
spin | ||
The deepspin object. | ||
Limitations | ||
----------- | ||
The currently implementation does not support the following features | ||
1. type_one_side == False | ||
2. exclude_types != [] | ||
3. spin is not None | ||
References | ||
---------- | ||
.. [1] Linfeng Zhang, Jiequn Han, Han Wang, Wissam A. Saidi, Roberto Car, and E. Weinan. 2018. | ||
End-to-end symmetry preserving inter-atomic potential energy model for finite and extended | ||
systems. In Proceedings of the 32nd International Conference on Neural Information Processing | ||
Systems (NIPS'18). Curran Associates Inc., Red Hook, NY, USA, 4441-4451. | ||
""" | ||
|
||
def __init__( | ||
self, | ||
rcut: float, | ||
rcut_smth: float, | ||
sel: List[str], | ||
neuron: List[int] = [24, 48, 96], | ||
resnet_dt: bool = False, | ||
trainable: bool = True, | ||
type_one_side: bool = True, | ||
exclude_types: List[List[int]] = [], | ||
set_davg_zero: bool = False, | ||
activation_function: str = "tanh", | ||
precision: str = DEFAULT_PRECISION, | ||
spin: Optional[Any] = None, | ||
# consistent with argcheck, not used though | ||
seed: Optional[int] = None, | ||
) -> None: | ||
## seed, uniform_seed, multi_task, not included. | ||
if not type_one_side: | ||
raise NotImplementedError("type_one_side == False not implemented") | ||
if spin is not None: | ||
raise NotImplementedError("spin is not implemented") | ||
|
||
self.rcut = rcut | ||
self.rcut_smth = rcut_smth | ||
self.sel = sel | ||
self.ntypes = len(self.sel) | ||
self.neuron = neuron | ||
self.resnet_dt = resnet_dt | ||
self.trainable = trainable | ||
self.type_one_side = type_one_side | ||
self.exclude_types = exclude_types | ||
self.set_davg_zero = set_davg_zero | ||
self.activation_function = activation_function | ||
self.precision = precision | ||
self.spin = spin | ||
self.emask = PairExcludeMask(self.ntypes, self.exclude_types) | ||
|
||
in_dim = 1 # not considiering type embedding | ||
self.embeddings = NetworkCollection( | ||
ntypes=self.ntypes, | ||
ndim=(1 if self.type_one_side else 2), | ||
network_type="embedding_network", | ||
) | ||
if not self.type_one_side: | ||
raise NotImplementedError("type_one_side == False not implemented") | ||
for ii in range(self.ntypes): | ||
self.embeddings[(ii,)] = EmbeddingNet( | ||
in_dim, | ||
self.neuron, | ||
self.activation_function, | ||
self.resnet_dt, | ||
self.precision, | ||
) | ||
self.env_mat = EnvMat(self.rcut, self.rcut_smth) | ||
self.nnei = np.sum(self.sel) | ||
self.davg = np.zeros( | ||
[self.ntypes, self.nnei, 1], dtype=PRECISION_DICT[self.precision] | ||
) | ||
self.dstd = np.ones( | ||
[self.ntypes, self.nnei, 1], dtype=PRECISION_DICT[self.precision] | ||
) | ||
self.orig_sel = self.sel | ||
|
||
def __setitem__(self, key, value): | ||
if key in ("avg", "data_avg", "davg"): | ||
self.davg = value | ||
elif key in ("std", "data_std", "dstd"): | ||
self.dstd = value | ||
else: | ||
raise KeyError(key) | ||
|
||
def __getitem__(self, key): | ||
if key in ("avg", "data_avg", "davg"): | ||
return self.davg | ||
elif key in ("std", "data_std", "dstd"): | ||
return self.dstd | ||
else: | ||
raise KeyError(key) | ||
|
||
@property | ||
def dim_out(self): | ||
"""Returns the output dimension of this descriptor.""" | ||
return self.get_dim_out() | ||
|
||
def get_dim_out(self): | ||
"""Returns the output dimension of this descriptor.""" | ||
return self.neuron[-1] | ||
|
||
def get_dim_emb(self): | ||
"""Returns the embedding (g2) dimension of this descriptor.""" | ||
raise NotImplementedError | ||
|
||
def get_rcut(self): | ||
"""Returns cutoff radius.""" | ||
return self.rcut | ||
|
||
def get_sel(self): | ||
"""Returns cutoff radius.""" | ||
return self.sel | ||
|
||
def mixed_types(self): | ||
"""Returns if the descriptor requires a neighbor list that distinguish different | ||
atomic types or not. | ||
""" | ||
return False | ||
|
||
def get_ntypes(self) -> int: | ||
"""Returns the number of element types.""" | ||
return self.ntypes | ||
|
||
def compute_input_stats(self, merged: List[dict], path: Optional[DPPath] = None): | ||
"""Update mean and stddev for descriptor elements.""" | ||
raise NotImplementedError | ||
|
||
def cal_g( | ||
self, | ||
ss, | ||
ll, | ||
): | ||
nf, nloc, nnei = ss.shape[0:3] | ||
ss = ss.reshape(nf, nloc, nnei, 1) | ||
# nf x nloc x nnei x ng | ||
gg = self.embeddings[(ll,)].call(ss) | ||
return gg | ||
|
||
def call( | ||
self, | ||
coord_ext, | ||
atype_ext, | ||
nlist, | ||
mapping: Optional[np.ndarray] = None, | ||
): | ||
"""Compute the descriptor. | ||
Parameters | ||
---------- | ||
coord_ext | ||
The extended coordinates of atoms. shape: nf x (nallx3) | ||
atype_ext | ||
The extended aotm types. shape: nf x nall | ||
nlist | ||
The neighbor list. shape: nf x nloc x nnei | ||
mapping | ||
The index mapping from extended to lcoal region. not used by this descriptor. | ||
Returns | ||
------- | ||
descriptor | ||
The descriptor. shape: nf x nloc x (ng x axis_neuron) | ||
gr | ||
The rotationally equivariant and permutationally invariant single particle | ||
representation. shape: nf x nloc x ng x 3 | ||
g2 | ||
The rotationally invariant pair-partical representation. | ||
this descriptor returns None | ||
h2 | ||
The rotationally equivariant pair-partical representation. | ||
this descriptor returns None | ||
sw | ||
The smooth switch function. | ||
""" | ||
del mapping | ||
# nf x nloc x nnei x 1 | ||
rr, ww = self.env_mat.call( | ||
coord_ext, atype_ext, nlist, self.davg, self.dstd, True | ||
) | ||
nf, nloc, nnei, _ = rr.shape | ||
sec = np.append([0], np.cumsum(self.sel)) | ||
|
||
ng = self.neuron[-1] | ||
xyz_scatter = np.zeros([nf, nloc, ng], dtype=PRECISION_DICT[self.precision]) | ||
exclude_mask = self.emask.build_type_exclude_mask(nlist, atype_ext) | ||
for tt in range(self.ntypes): | ||
mm = exclude_mask[:, :, sec[tt] : sec[tt + 1]] | ||
tr = rr[:, :, sec[tt] : sec[tt + 1], :] | ||
tr = tr * mm[:, :, :, None] | ||
gg = self.cal_g(tr, tt) | ||
gg = np.mean(gg, axis=2) | ||
# nf x nloc x ng x 1 | ||
xyz_scatter += gg | ||
|
||
res_rescale = 1.0 / 10.0 | ||
res = xyz_scatter * res_rescale | ||
res = res.reshape(nf, nloc, -1).astype(GLOBAL_NP_FLOAT_PRECISION) | ||
return res, None, None, None, ww | ||
|
||
def serialize(self) -> dict: | ||
"""Serialize the descriptor to dict.""" | ||
return { | ||
"@class": "Descriptor", | ||
"type": "se_r", | ||
"rcut": self.rcut, | ||
"rcut_smth": self.rcut_smth, | ||
"sel": self.sel, | ||
"neuron": self.neuron, | ||
"resnet_dt": self.resnet_dt, | ||
"trainable": self.trainable, | ||
"type_one_side": self.type_one_side, | ||
"exclude_types": self.exclude_types, | ||
"set_davg_zero": self.set_davg_zero, | ||
"activation_function": self.activation_function, | ||
# make deterministic | ||
"precision": np.dtype(PRECISION_DICT[self.precision]).name, | ||
"spin": self.spin, | ||
"env_mat": self.env_mat.serialize(), | ||
"embeddings": self.embeddings.serialize(), | ||
"@variables": { | ||
"davg": self.davg, | ||
"dstd": self.dstd, | ||
}, | ||
} | ||
|
||
@classmethod | ||
def deserialize(cls, data: dict) -> "DescrptSeR": | ||
"""Deserialize from dict.""" | ||
data = copy.deepcopy(data) | ||
data.pop("@class", None) | ||
data.pop("type", None) | ||
variables = data.pop("@variables") | ||
embeddings = data.pop("embeddings") | ||
env_mat = data.pop("env_mat") | ||
obj = cls(**data) | ||
|
||
obj["davg"] = variables["davg"] | ||
obj["dstd"] = variables["dstd"] | ||
obj.embeddings = NetworkCollection.deserialize(embeddings) | ||
obj.env_mat = EnvMat.deserialize(env_mat) | ||
return obj |
Oops, something went wrong.