-
Notifications
You must be signed in to change notification settings - Fork 19
/
vis_3d.py
687 lines (622 loc) · 27.5 KB
/
vis_3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
import os
offscreen = False
if os.environ.get('DISP', 'f') == 'f':
from pyvirtualdisplay import Display
display = Display(visible=False, size=(2560, 1440))
display.start()
offscreen = True
from mayavi import mlab
import mayavi
mlab.options.offscreen = offscreen
print("Set mlab.options.offscreen={}".format(mlab.options.offscreen))
import os, time, argparse, math, os.path as osp, numpy as np
import torch
import torch.distributed as dist
import torch.nn.functional as F
import matplotlib.pyplot as plt
import matplotlib; matplotlib.use('agg')
import mmcv
from mmengine import Config
from mmengine.logging import MMLogger
from mmseg.models import build_segmentor
import warnings
warnings.filterwarnings("ignore")
import model
from dataset import get_dataloader
from dataset.dataset_wrapper_temporal import custom_collate_fn_temporal
from utils.config_tools import modify_for_eval
from utils.metric_util import cityscapes2semantickitti, openseed2nuscenes
from vis_pics import create_label_colormap
from PIL import Image
def pass_print(*args, **kwargs):
pass
KITTI_ROOT = 'data/kitti'
import dataset.kitti.io_data as SemanticKittiIO
def read_semantic_kitti(metas, idx):
label_path = os.path.join(
KITTI_ROOT, "dataset/sequences", metas['sequence'], "voxels", "{}.label".format(metas['token']))
invalid_path = os.path.join(
KITTI_ROOT, "dataset/sequences", metas['sequence'], "voxels", "{}.invalid".format(metas['token']))
remap_lut = SemanticKittiIO.get_remap_lut("dataset/kitti/semantic-kitti.yaml")
LABEL = SemanticKittiIO._read_label_SemKITTI(label_path)
INVALID = SemanticKittiIO._read_invalid_SemKITTI(invalid_path)
LABEL = remap_lut[LABEL.astype(np.uint16)].astype(
np.float32
) # Remap 20 classes semanticKITTI SSC
LABEL[
np.isclose(INVALID, 1)
] = 255 # Setting to unknown all voxels marked on invalid mask...
LABEL = LABEL.reshape(256, 256, 32)
LABEL = np.flip(LABEL, 1)
save_info = f"{metas['sequence']}_{metas['token']}_{idx}.png"
return LABEL, save_info
def read_occ3d_label(metas, nusc, idx):
token = metas['token']
scene_token = nusc.get('sample', token)['scene_token']
scene_name = nusc.get('scene', scene_token)['name']
label_file = f'data/occ3d/gts/{scene_name}/{token}/labels.npz'
label = np.load(label_file)
save_info = f"{scene_name}_{token}_{idx}.png"
return label, save_info
def get_grid_coords(dims, resolution):
"""
:param dims: the dimensions of the grid [x, y, z] (i.e. [256, 256, 32])
:return coords_grid: is the center coords of voxels in the grid
"""
g_xx = np.arange(0, dims[0]) # [0, 1, ..., 256]
# g_xx = g_xx[::-1]
g_yy = np.arange(0, dims[1]) # [0, 1, ..., 256]
# g_yy = g_yy[::-1]
g_zz = np.arange(0, dims[2]) # [0, 1, ..., 32]
# Obtaining the grid with coords...
xx, yy, zz = np.meshgrid(g_xx, g_yy, g_zz)
coords_grid = np.array([xx.flatten(), yy.flatten(), zz.flatten()]).T
coords_grid = coords_grid.astype(np.float32)
resolution = np.array(resolution, dtype=np.float32).reshape([1, 3])
coords_grid = (coords_grid * resolution) + resolution / 2
return coords_grid
def draw(
voxels, # semantic occupancy predictions
pred_pts, # lidarseg predictions
vox_origin,
voxel_size=0.2, # voxel size in the real world
grid=None, # voxel coordinates of point cloud
pt_label=None, # label of point cloud
save_dir=None,
cam_positions=None,
focal_positions=None,
timestamp=None,
mode=0,
sem=False,
dataset='nuscenes',
save_path=None
):
w, h, z = voxels.shape
# grid = grid.astype(np.int)
# Compute the voxels coordinates
grid_coords = get_grid_coords(
[voxels.shape[0], voxels.shape[1], voxels.shape[2]], voxel_size
) + np.array(vox_origin, dtype=np.float32).reshape([1, 3])
if mode == 0:
grid_coords = np.vstack([grid_coords.T, voxels.reshape(-1)]).T
elif mode == 1:
indexes = grid[:, 0] * h * z + grid[:, 1] * z + grid[:, 2]
indexes, pt_index = np.unique(indexes, return_index=True)
pred_pts = pred_pts[pt_index]
grid_coords = grid_coords[indexes]
grid_coords = np.vstack([grid_coords.T, pred_pts.reshape(-1)]).T
elif mode == 2:
indexes = grid[:, 0] * h * z + grid[:, 1] * z + grid[:, 2]
indexes, pt_index = np.unique(indexes, return_index=True)
gt_label = pt_label[pt_index]
grid_coords = grid_coords[indexes]
grid_coords = np.vstack([grid_coords.T, gt_label.reshape(-1)]).T
else:
raise NotImplementedError
# Get the voxels inside FOV
fov_grid_coords = grid_coords
# Remove empty and unknown voxels
fov_voxels = fov_grid_coords[
(fov_grid_coords[:, 3] > 0) & (fov_grid_coords[:, 3] < 100)
]
print(len(fov_voxels))
figure = mlab.figure(size=(2560, 1440), bgcolor=(1, 1, 1))
# Draw occupied inside FOV voxels
voxel_size = sum(voxel_size) / 3
if not sem:
plt_plot_fov = mlab.points3d(
# fov_voxels[:, 1],
# fov_voxels[:, 0],
fov_voxels[:, 0],
fov_voxels[:, 1],
fov_voxels[:, 2],
fov_voxels[:, 3],
colormap="jet",
# colormap="hot",
scale_factor=1.0 * voxel_size,
mode="cube",
opacity=1.0,
)
else:
plt_plot_fov = mlab.points3d(
# fov_voxels[:, 1],
# fov_voxels[:, 0],
fov_voxels[:, 0],
fov_voxels[:, 1],
fov_voxels[:, 2],
fov_voxels[:, 3],
scale_factor=1.0 * voxel_size,
mode="cube",
opacity=1.0,
vmin=1,
vmax=19 if dataset == 'kitti' else 16, # 16
)
plt_plot_fov.glyph.scale_mode = "scale_by_vector"
if sem:
if dataset == 'kitti':
colors = create_label_colormap()
colors = np.concatenate([colors, np.ones_like(colors[:, :1]) * 255], axis=-1)
else:
colors = np.array(
[
[255, 120, 50, 255], # barrier orange
[255, 192, 203, 255], # bicycle pink
[255, 255, 0, 255], # bus yellow
[ 0, 150, 245, 255], # car blue
[ 0, 255, 255, 255], # construction_vehicle cyan
[255, 127, 0, 255], # motorcycle dark orange
[255, 0, 0, 255], # pedestrian red
[255, 240, 150, 255], # traffic_cone light yellow
[135, 60, 0, 255], # trailer brown
[160, 32, 240, 255], # truck purple
[255, 0, 255, 255], # driveable_surface dark pink
# [175, 0, 75, 255], # other_flat dark red
[139, 137, 137, 255],
[ 75, 0, 75, 255], # sidewalk dard purple
[150, 240, 80, 255], # terrain light green
[230, 230, 250, 255], # manmade white
[ 0, 175, 0, 255], # vegetation green
]
).astype(np.uint8)
plt_plot_fov.module_manager.scalar_lut_manager.lut.table = colors
scene = figure.scene
if dataset == 'nuscenes':
scene.camera.position = [118.7195754824976, 118.70290907014409, 120.11124225247899]
scene.camera.focal_point = [0.008333206176757812, -0.008333206176757812, 1.399999976158142]
scene.camera.view_angle = 30.0
scene.camera.view_up = [0.0, 0.0, 1.0]
scene.camera.clipping_range = [114.42016931210819, 320.9039783052695]
scene.camera.compute_view_plane_normal()
scene.render()
scene.camera.azimuth(-5)
scene.render()
scene.camera.azimuth(5)
scene.render()
scene.camera.azimuth(5)
scene.render()
scene.camera.azimuth(5)
scene.render()
scene.camera.azimuth(5)
scene.render()
scene.camera.azimuth(5)
scene.render()
scene.camera.azimuth(5)
scene.render()
scene.camera.azimuth(5)
scene.render()
scene.camera.azimuth(5)
scene.render()
scene.camera.azimuth(5)
scene.render()
scene.camera.azimuth(5)
scene.render()
scene.camera.azimuth(5)
scene.render()
scene.camera.azimuth(5)
scene.render()
scene.camera.azimuth(5)
scene.render()
scene.camera.azimuth(5)
scene.render()
scene.camera.azimuth(5)
scene.render()
scene.camera.azimuth(5)
scene.render()
scene.camera.azimuth(5)
scene.render()
scene.camera.azimuth(5)
scene.render()
scene.camera.azimuth(5)
scene.render()
scene.camera.azimuth(5)
scene.render()
scene.camera.azimuth(5)
scene.render()
scene.camera.azimuth(5)
scene.render()
scene.camera.azimuth(5)
scene.render()
scene.camera.azimuth(5)
scene.render()
scene.camera.azimuth(5)
scene.render()
scene.camera.azimuth(5)
scene.render()
scene.camera.azimuth(5)
scene.render()
scene.camera.azimuth(5)
scene.render()
scene.camera.azimuth(5)
scene.render()
scene.camera.azimuth(-5)
scene.render()
scene.camera.position = [-138.7379881436844, -0.008333206176756428, 99.5084646673331]
scene.camera.focal_point = [0.008333206176757812, -0.008333206176757812, 1.399999976158142]
scene.camera.view_angle = 30.0
scene.camera.view_up = [0.0, 0.0, 1.0]
scene.camera.clipping_range = [104.37185230017721, 252.84608651497263]
scene.camera.compute_view_plane_normal()
scene.render()
scene.camera.position = [-114.65804807470022, -0.008333206176756668, 82.48137575398867]
scene.camera.focal_point = [0.008333206176757812, -0.008333206176757812, 1.399999976158142]
scene.camera.view_angle = 30.0
scene.camera.view_up = [0.0, 0.0, 1.0]
scene.camera.clipping_range = [75.17498702830105, 222.91192666552377]
scene.camera.compute_view_plane_normal()
scene.render()
scene.camera.position = [-94.75727115818437, -0.008333206176756867, 68.40940144543957]
scene.camera.focal_point = [0.008333206176757812, -0.008333206176757812, 1.399999976158142]
scene.camera.view_angle = 30.0
scene.camera.view_up = [0.0, 0.0, 1.0]
scene.camera.clipping_range = [51.04534630774225, 198.1729515833347]
scene.camera.compute_view_plane_normal()
scene.render()
scene.camera.elevation(5)
scene.camera.orthogonalize_view_up()
scene.render()
scene.camera.position = [-107.15500034628069, -0.008333206176756742, 92.16667026873841]
scene.camera.focal_point = [0.008333206176757812, -0.008333206176757812, 1.399999976158142]
scene.camera.view_angle = 30.0
scene.camera.view_up = [0.6463156430702276, -6.454925414290924e-18, 0.7630701733934554]
scene.camera.clipping_range = [78.84362692774403, 218.2948716014858]
scene.camera.compute_view_plane_normal()
scene.render()
scene.camera.position = [-107.15500034628069, -0.008333206176756742, 92.16667026873841]
scene.camera.focal_point = [0.008333206176757812, -0.008333206176757812, 1.399999976158142]
scene.camera.view_angle = 30.0
scene.camera.view_up = [0.6463156430702277, -6.4549254142909245e-18, 0.7630701733934555]
scene.camera.clipping_range = [78.84362692774403, 218.2948716014858]
scene.camera.compute_view_plane_normal()
scene.render()
scene.camera.elevation(5)
scene.camera.orthogonalize_view_up()
scene.render()
scene.camera.elevation(5)
scene.camera.orthogonalize_view_up()
scene.render()
scene.camera.elevation(-5)
scene.camera.orthogonalize_view_up()
scene.render()
else:
# camera view
scene.camera.position = cam_positions[0] # - np.array([0.7, 1.3, 0.])
scene.camera.focal_point = focal_positions[0] # - np.array([0.7, 1.3, 0.])
scene.camera.view_angle = 41
scene.camera.view_up = [0.0, 0.0, 1.0]
scene.camera.clipping_range = [0.01, 300.]
scene.camera.compute_view_plane_normal()
scene.render()
if offscreen:
mlab.savefig(save_path)
else:
mlab.show()
mlab.close()
def main(local_rank, args):
if args.dataset == 'nuscenes':
from nuscenes import NuScenes
nusc = NuScenes(version='v1.0-trainval', dataroot='data/nuscenes')
# global settings
torch.backends.cudnn.benchmark = True
# load config
cfg = Config.fromfile(args.py_config)
cfg = modify_for_eval(cfg, args.dataset)
cfg.work_dir = args.work_dir
# init DDP
if args.gpus > 1:
distributed = True
ip = os.environ.get("MASTER_ADDR", "127.0.0.1")
port = os.environ.get("MASTER_PORT", "20506")
hosts = int(os.environ.get("WORLD_SIZE", 1)) # number of nodes
rank = int(os.environ.get("RANK", 0)) # node id
gpus = torch.cuda.device_count() # gpus per node
print(f"tcp://{ip}:{port}")
dist.init_process_group(
backend="nccl", init_method=f"tcp://{ip}:{port}",
world_size=hosts * gpus, rank=rank * gpus + local_rank
)
world_size = dist.get_world_size()
cfg.gpu_ids = range(world_size)
torch.cuda.set_device(local_rank)
local_rank = dist.get_rank()
if dist.get_rank() != 0:
import builtins
builtins.print = pass_print
else:
distributed = False
local_rank = 0
# configure logger
if local_rank == 0:
os.makedirs(args.work_dir, exist_ok=True)
cfg.dump(osp.join(args.work_dir, 'eval' + osp.basename(args.py_config)))
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
log_file = osp.join(args.work_dir, f'eval-{timestamp}.log')
logger = MMLogger(name='selfocc', log_file=log_file, log_level='INFO')
# build model
my_model = build_segmentor(cfg.model)
my_model.init_weights()
n_parameters = sum(p.numel() for p in my_model.parameters() if p.requires_grad)
logger.info(f'Number of params: {n_parameters}')
if distributed:
my_model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(my_model)
print('converted sync bn.')
find_unused_parameters = cfg.get('find_unused_parameters', False)
ddp_model_module = torch.nn.parallel.DistributedDataParallel
my_model = ddp_model_module(
my_model.cuda(),
device_ids=[torch.cuda.current_device()],
broadcast_buffers=False,
find_unused_parameters=find_unused_parameters)
raw_model = my_model.module
else:
my_model = my_model.to(args.device)
raw_model = my_model
print('done ddp model')
cfg.train_wrapper_config.phase = 'val'
if args.scene_name:
cfg.val_dataset_config.update({
'type': 'nuScenes_One_Frame',
'imageset': 'data/nuscenes_infos_val_temporal_v1_scene_1.pkl',
'scene_name': args.scene_name,
'strict': False})
train_dataset_loader, val_dataset_loader = get_dataloader(
cfg.train_dataset_config,
cfg.val_dataset_config,
cfg.train_wrapper_config,
cfg.val_wrapper_config,
cfg.train_loader,
cfg.val_loader,
cfg.nusc,
dist=distributed,
iter_resume=False,
val_only=True)
if args.vis_train:
dataset = train_dataset_loader.dataset
else:
dataset = val_dataset_loader.dataset
cfg.resume_from = ''
if osp.exists(osp.join(args.work_dir, 'latest.pth')):
cfg.resume_from = osp.join(args.work_dir, 'latest.pth')
if args.resume_from:
cfg.resume_from = args.resume_from
print('resume from: ', cfg.resume_from)
print('work dir: ', args.work_dir)
epoch = 'last'
if cfg.resume_from and osp.exists(cfg.resume_from):
map_location = 'cpu'
ckpt = torch.load(cfg.resume_from, map_location=map_location)
if 'state_dict' in ckpt:
state_dict = ckpt['state_dict']
else:
state_dict = ckpt
if 'epoch' in ckpt:
epoch = ckpt['epoch']
print(raw_model.load_state_dict(state_dict, strict=False))
print(f'successfully resumed from {cfg.resume_from}')
elif cfg.load_from:
ckpt = torch.load(cfg.load_from, map_location='cpu')
if 'state_dict' in ckpt:
state_dict = ckpt['state_dict']
else:
state_dict = ckpt
print(raw_model.load_state_dict(state_dict, strict=False))
xx = torch.linspace(-40.0, 40.0, 200)
yy = torch.linspace(-40.0, 40.0, 200)
zz = torch.linspace(-1.0, 5.4, 16)
xyz = torch.stack([
xx[:, None, None].expand(-1, 200, 16),
yy[None, :, None].expand(200, -1, 16),
zz[None, None, :].expand(200, 200, -1),
torch.ones(200, 200, 16)
], dim=-1) # 200, 200, 16, 4
xyz = xyz.to(args.device)
# eval
my_model.eval()
vis_save_path = osp.join(args.work_dir, args.dir_name, f'epoch{epoch}')
if args.scene_name:
vis_save_path = osp.join(vis_save_path, args.scene_name)
os.makedirs(vis_save_path, exist_ok=True)
with torch.no_grad():
num_iters = len(val_dataset_loader) if args.scene_name else len(args.frame_idx)
if args.scene_name:
loader_iter = iter(val_dataset_loader)
for idx in range(num_iters):
if args.scene_name:
input_imgs, curr_imgs, prev_imgs, next_imgs, color_imgs, img_metas, _, _, _ = next(loader_iter)
real_idx = img_metas[0]['timestamp']
else:
real_idx = args.frame_idx[idx]
one_batch = dataset[real_idx]
input_imgs, curr_imgs, prev_imgs, next_imgs, color_imgs, img_metas, _, _, _ = custom_collate_fn_temporal([one_batch])
input_imgs = input_imgs.to(args.device)
if 'kitti' in args.dataset:
point_cloud_range = [-25.6, 0.0, -2.0, 25.6, 51.2, 4.4]
resolution = 0.2
else:
if args.scene_size == 0:
point_cloud_range = [-51.2, -51.2, -4, 51.2, 51.2, 4]
resolution = 0.4
elif args.scene_size == 1:
point_cloud_range = [-40.0, -40.0, -2.8, 40.0, 40.0, 3.6]
resolution = 0.4
elif args.scene_size == 2:
point_cloud_range = [-40.0, -40.0, -3.1, 40.0, 40.0, 3.9]
resolution = 0.4
elif args.scene_size == 3:
point_cloud_range = [-40.0, -40.0, -3.2, 40.0, 40.0, 4.0]
resolution = 0.3
elif args.scene_size == 4:
point_cloud_range = [-40.0, -40.0, -1.0, 40.0, 40.0, 5.4]
resolution = 0.4
if args.model_pred:
if cfg.get('estimate_pose'):
assert curr_aug is not None and prev_aug is not None and next_aug is not None
assert img_metas[0]['input_imgs_path'] == img_metas[0]['curr_imgs_path']
curr_aug, prev_aug, next_aug = curr_aug.cuda(), prev_aug.cuda(), next_aug.cuda()
pose_dict = my_model(pose_input=[curr_aug, prev_aug, next_aug], metas=img_metas, predict_pose=True)
for i_meta, meta in enumerate(img_metas):
meta.update(pose_dict[i_meta])
result_dict = my_model(
imgs=input_imgs,
metas=img_metas,
occ_only=True,
aabb=point_cloud_range,
resolution=resolution)
if args.transform:
ego2lidar = img_metas[0]['ego2lidar']
ego2lidar = xyz.new_tensor(ego2lidar) # 4, 4
lidar_points = torch.matmul(ego2lidar.unsqueeze(0), xyz.reshape(-1, 4, 1))
lidar_points = lidar_points.squeeze(-1)[:, :3] # 200*200*16, 3
lidar_points[:, 0] = (lidar_points[:, 0] - point_cloud_range[0]) / (point_cloud_range[3] - point_cloud_range[0])
lidar_points[:, 1] = (lidar_points[:, 1] - point_cloud_range[1]) / (point_cloud_range[4] - point_cloud_range[1])
lidar_points[:, 2] = (lidar_points[:, 2] - point_cloud_range[2]) / (point_cloud_range[5] - point_cloud_range[2])
lidar_points = lidar_points.reshape(1, 200, 200, 16, 3)
sampled_sdf = F.grid_sample(
result_dict['sdf'][None, None, ...], # 1, 1, H, W, D
lidar_points[..., [2, 0, 1]] * 2 - 1,
mode='bilinear',
align_corners=True,
padding_mode='border') # 1, 1, 200, 200, 16
sdf = sampled_sdf.squeeze().permute(1, 0, 2).cpu()
else:
sdf = result_dict['sdf'].cpu()
grid_size = sdf.shape
voxel_density = sdf
predict_vox = (voxel_density <= args.thresh).to(torch.int)
predict_vox[:6, ...] = 0
predict_vox[-6:, ...] = 0
predict_vox[:, :6, :] = 0
predict_vox[:, -6:, :] = 0
print((voxel_density > 1.0).sum())
print((voxel_density > 2.0).sum())
print((voxel_density > 3.0).sum())
if args.dataset == 'nuscenes':
gt_occ, save_info = read_occ3d_label(img_metas[0], nusc, real_idx)
camera_mask = torch.from_numpy(gt_occ['mask_camera']).bool()#.cuda()
lidar_mask = torch.from_numpy(gt_occ['mask_lidar']).bool()#.cuda()
gt_vox = torch.from_numpy(gt_occ['semantics'])#.cuda()
gt_vox[gt_vox == 17] = 0
gt_vox = gt_vox.permute(1, 0, 2)
camera_mask = camera_mask.permute(1, 0, 2)
lidar_mask = lidar_mask.permute(1, 0, 2)
else:
gt_vox, save_info = read_semantic_kitti(img_metas[0], real_idx)
lidar_mask = gt_vox != 255
if not args.model_pred:
predict_vox = gt_vox
grid_size = predict_vox.shape
if args.use_lidar_mask:
predict_vox[~lidar_mask] = 0
elif args.use_cam_mask and args.dataset == 'nuscenes':
predict_vox[~camera_mask] = 0
predict_vox[..., (grid_size[2] - args.cap):] = 0
if args.sem:
if args.model_pred:
if args.transform:
sem = result_dict['logits'].permute(3, 0, 1, 2) # C, H, W, D
sampled_sem = F.grid_sample(
sem[None, ...], # 1, C, H, W, D
lidar_points[..., [2, 0, 1]] * 2 - 1,
mode='bilinear',
align_corners=True) # 1, C, 200, 200, 16
sampled_sem = torch.argmax(sampled_sem, dim=1).squeeze()
sem = sampled_sem.permute(1, 0, 2)
else:
sem = result_dict['sem']
if args.dataset == 'nuscenes':
sem = openseed2nuscenes(sem)
elif args.dataset == 'kitti':
sem = cityscapes2semantickitti(sem)
else:
raise NotImplementedError
sem = sem.cpu()
predict_vox = predict_vox * sem
else:
for z in range(grid_size[2]-args.cap):
mask = (predict_vox > 0)[..., z]
predict_vox[..., z][mask] = z + 1 # grid_size[2] - z
if args.dataset == 'nuscenes':
voxel_origin = [-40.0, -40.0, -1.0]
voxel_max = [40.0, 40.0, 5.4]
resolution = 0.4
else:
voxel_origin = point_cloud_range[:3]
voxel_max = point_cloud_range[3:]
# visualization
if args.save_rgb:
frame_dir = os.path.join(vis_save_path, str(real_idx))
os.makedirs(frame_dir, exist_ok=True)
gt_imgs = curr_imgs.squeeze(0).permute(0, 2, 3, 1).cpu().numpy() * 256
gt_imgs = gt_imgs[..., [2, 1, 0]]
gt_imgs = gt_imgs.astype(np.uint8)
for i in range(gt_imgs.shape[0]):
img = Image.fromarray(gt_imgs[i])
img.save(osp.join(frame_dir, f'gtimg{i}.png'))
save_path = os.path.join(vis_save_path, save_info)
draw(predict_vox,
None, # predict_pts,
voxel_origin,
[resolution] * 3,
None, # grid.squeeze(0).cpu().numpy(),
None, # pt_label.squeeze(-1),
None,
img_metas[0]['cam_positions'] if 'cam_positions' in img_metas[0] else None,
img_metas[0]['focal_positions'] if 'focal_positions' in img_metas[0] else None,
timestamp=timestamp,
mode=args.mode,
sem=args.sem,
dataset=args.dataset,
save_path=save_path)
logger.info(f'done processing frame idx{idx}')
if __name__ == '__main__':
# Training settings
parser = argparse.ArgumentParser(description='')
parser.add_argument('--py-config', default='config/tpv_lidarseg.py')
parser.add_argument('--work-dir', type=str, default='./out/tpv_lidarseg')
parser.add_argument('--resume-from', type=str, default='')
parser.add_argument('--hfai', action='store_true', default=False)
parser.add_argument('--dir-name', type=str, default='vis_3d')
parser.add_argument('--frame-idx', type=int, nargs='+', default=[0])
parser.add_argument('--vis-train', action='store_true', default=False)
parser.add_argument('--thresh', type=float, default=0)
parser.add_argument('--mode', type=int, default=0, help='0: occupancy, 1: predicted point cloud, 2: gt point cloud')
parser.add_argument('--cap', type=int, default=0)
parser.add_argument('--dataset', type=str, default='nuscenes')
parser.add_argument('--device', type=str, default='cuda')
parser.add_argument('--model-pred', action='store_true', default=False)
parser.add_argument('--scene-size', type=int, default=0)
parser.add_argument('--sem', action='store_true', default=False)
parser.add_argument('--use-lidar-mask', action='store_true', default=False)
parser.add_argument('--use-cam-mask', action='store_true', default=False)
parser.add_argument('--transform', action='store_true', default=False)
parser.add_argument('--save-rgb', action='store_true', default=False)
parser.add_argument('--scene-name', type=str, default='')
args = parser.parse_args()
ngpus = torch.cuda.device_count()
args.gpus = ngpus
print(args)
if args.hfai:
os.environ['HFAI'] = 'true'
if ngpus > 1:
torch.multiprocessing.spawn(main, args=(args,), nprocs=args.gpus)
else:
main(0, args)