Skip to content

Latest commit

 

History

History
130 lines (105 loc) · 4.58 KB

prepare_data.md

File metadata and controls

130 lines (105 loc) · 4.58 KB

NuScenes

a. Download nuScenes data.

Download nuScenes V1.0 full dataset data HERE.

b. Download occupancy annotations.

Download the gts.tar.gz of the trainval split of Occ3D-nuScenes HERE and unzip it.

c. Download nuScenes pkl files.

As a self-supervised method, we also include sweep data during training.

# pkl for keyframes and sweep data
wget --content-disposition https://cloud.tsinghua.edu.cn/f/ff15569b9e4d4086857e/?dl=1
wget --content-disposition https://cloud.tsinghua.edu.cn/f/fbe2ad8507494953abbe/?dl=1
# pkl for keyframes
wget --content-disposition https://cloud.tsinghua.edu.cn/f/07323a7a1c894e768924/?dl=1

Or you can generate the required sweep synchronized pkl files offline. Note that you still need and only need the tokens of keyframe samples of the train and val splits, which we store in additional pkl files (sorry~). Our code takes care of the sweep synchronizing part.

# You can download the pkl files that contain the token of keyframe samples at
# train: https://cloud.tsinghua.edu.cn/f/efca1849e0f64551a0c4/?dl=1
# val: https://cloud.tsinghua.edu.cn/f/a4e30d0ed8c945fba1e8/?dl=1

# remember to change the source and target pkl paths at line 9 and 119.
python examine_sweeps.py

Folder structure

SelfOcc
├── ...
├── data/
│   ├── nuscenes_infos_train_sweeps.pkl
│   ├── nuscenes_infos_val_sweeps.pkl
│   ├── nuscenes_infos_val_temporal_v2.pkl
│   ├── nuscenes/
│   │   ├── maps/
│   │   ├── samples/
│   │   ├── sweeps/
│   │   ├── v1.0-test/
|   |   ├── v1.0-trainval/
│   ├── occ3d/
│   │   ├── gts/
│   │   |   ├── scene-0001/
│   │   |   ├── ...

SemanticKITTI

We follow similar instructions as SceneRF to prepare SemanticKITTI.

a. Download calib, rgb, pose and lidar files.

To train and evaluate novel depths synthesis, please download on KITTI Odometry website the following data:

- Odometry data set (calibration files, 1 MB)
- Odometry data set (color, 65 GB)
- Odometry ground truth poses (4 MB)
- Velodyne laser data, 80 GB

b. Download occupancy annotations.

To evaluate 3D occupancy prediction, please download the SemanticKITTI voxel data (700 MB) on Semantic KITTI download website.

c. Create preprocess folder.

Create an empty folder to store preprocess data at data/kitti/preprocess.

Folder structure

SelfOcc
├── ...
├── data/
│   ├── kitti/
│   │   ├── dataset/
|   |   |   ├── poses/
|   |   |   |   ├── 00.txt
|   |   |   |   ├── ...
|   |   |   ├── sequences/
|   |   |   |   ├── 00/
|   |   |   |   |   ├── image_2/
|   |   |   |   |   ├── image_3/
|   |   |   |   |   ├── labels/
|   |   |   |   |   ├── velodyne/
|   |   |   |   |   ├── voxels/
|   |   |   |   |   ├── calib.txt
|   |   |   |   |   ├── poses.txt
|   |   |   |   |   ├── times.txt
|   |   |   |   ├── ...
│   │   ├── preprocess/

KITTI-2015

We follow similar instructions as BehindTheScenes to prepare KITTI-2015.

To download KITTI, go to https://www.cvlibs.net/datasets/kitti/raw_data.php and create an account. We require all synched+rectified data, as well as the calibrations (using in fact only frames with ego motion). The website also provides scripts for automatic downloading of the different sequences. Following BehindTheScenes, we use the same poses computed from ORB-SLAM3 (can be found under dataset/kitti_raw/orb-slam_poses).

Folder structure

SelfOcc
├── ...
├── data/
│   ├── kitti_raw/
│   │   ├── 2011_09_26/
|   |   |   ├── 2011_09_26_drive_0001_sync/
|   |   |   |   ├── image_00/
|   |   |   |   ├── image_01/
|   |   |   |   ├── image_02/
|   |   |   |   ├── image_03/
|   |   |   |   ├── oxts/
|   |   |   |   ├── velodyne_points/
|   |   |   ├── ...
|   |   |   ├── calib_cam_to_cam.txt
|   |   |   ├── calib_imu_to_velo.txt
|   |   |   ├── calib_velo_to_cam.txt
│   │   ├── 2011_09_28/
│   │   ├── 2011_09_29/
│   │   ├── 2011_09_30/
│   │   ├── 2011_10_03/