Skip to content

使用OpenCV部署全景驾驶感知网络YOLOP,可同时处理交通目标检测、可驾驶区域分割、车道线检测,三项视觉感知任务,包含C++和Python两种版本的程序实现。本套程序只依赖opencv库就可以运行, 从而彻底摆脱对任何深度学习框架的依赖。

Notifications You must be signed in to change notification settings

hpc203/YOLOP-opencv-dnn

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

YOLOP-opencv-dnn

使用OpenCV部署全景驾驶感知网络YOLOP,可同时处理交通目标检测、可驾驶区域分割、车道线检测,三项视觉感知任务,依然是包含C++和Python两种版本的程序实现

onnx文件从百度云盘下载,链接:https://pan.baidu.com/s/1A_9cldUHeY9GUle_HO4Crg 提取码:mf1x

C++版本的主程序文件是main.cpp,Python版本的主程序文件是main.py。把onnx文件下载到主程序文件所在目录后,就可以运行程序了。文件夹images 里含有若干张测试图片,来自于bdd100k自动驾驶数据集。

本套程序是在华中科技大学视觉团队在最近发布的项目https://github.com/hustvl/YOLOP 的基础上做的一个opencv推理部署程序,本套程序只依赖opencv库就可以运行, 从而彻底摆脱对任何深度学习框架的依赖。如果程序运行出错,那很有可能是您安装的opencv版本低了,这时升级opencv版本就能正常运行的。

此外,在本套程序里,还有一个export_onnx.py文件,它是生成onnx文件的程序。不过,export_onnx.py文件不能本套程序目录内运行的, 假如您想了解如何生成.onnx文件,需要把export_onnx.py文件拷贝到https://github.com/hustvl/YOLOP 的主目录里之后,并且修改lib/models/common.py里的代码, 这时运行export_onnx.py就可以生成onnx文件了。在lib/models/common.py里修改哪些代码,可以参见我的csdn博客文章 https://blog.csdn.net/nihate/article/details/112731327

About

使用OpenCV部署全景驾驶感知网络YOLOP,可同时处理交通目标检测、可驾驶区域分割、车道线检测,三项视觉感知任务,包含C++和Python两种版本的程序实现。本套程序只依赖opencv库就可以运行, 从而彻底摆脱对任何深度学习框架的依赖。

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published