Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

remove JuMP prefix #84

Merged
merged 1 commit into from
Oct 16, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion examples/ex5.jl
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# https://arxiv.org/pdf/2303.04375.pdf
# Nested GDP: https://arxiv.org/pdf/2303.04375.pdf
using DisjunctiveProgramming

##
Expand Down
2 changes: 1 addition & 1 deletion examples/ex6.jl
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
using DisjunctiveProgramming

##
## Multi-level Nested GDP
m = GDPModel()
@variable(m, -5 <= x[1:3] <= 5)

Expand Down
116 changes: 58 additions & 58 deletions src/bigm.jl
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
# BIG-M VALUE
################################################################################
# Get Big-M value for a particular constraint
function _get_M_value(func::JuMP.AbstractJuMPScalar, set::_MOI.AbstractSet, method::BigM)
function _get_M_value(func::AbstractJuMPScalar, set::_MOI.AbstractSet, method::BigM)
if method.tighten
M = _get_tight_M(func, set, method)
else
Expand All @@ -12,7 +12,7 @@ function _get_M_value(func::JuMP.AbstractJuMPScalar, set::_MOI.AbstractSet, meth
end

# Get the tightest Big-M value for a particular constraint
function _get_tight_M(func::JuMP.AbstractJuMPScalar, set::_MOI.AbstractSet, method::BigM)
function _get_tight_M(func::AbstractJuMPScalar, set::_MOI.AbstractSet, method::BigM)
M = min.(method.value, _calculate_tight_M(func, set, method)) #broadcast for when S <: MOI.Interval or MOI.EqualTo or MOI.Zeros
if any(isinf.(M))
error("A finite Big-M value must be used. The value obtained was $M.")
Expand All @@ -21,14 +21,14 @@ function _get_tight_M(func::JuMP.AbstractJuMPScalar, set::_MOI.AbstractSet, meth
end

# Get user-specified Big-M value
function _get_M(::JuMP.AbstractJuMPScalar, ::Union{_MOI.LessThan, _MOI.GreaterThan, _MOI.Nonnegatives, _MOI.Nonpositives}, method::BigM)
function _get_M(::AbstractJuMPScalar, ::Union{_MOI.LessThan, _MOI.GreaterThan, _MOI.Nonnegatives, _MOI.Nonpositives}, method::BigM)
M = method.value
if isinf(M)
error("A finite Big-M value must be used. The value given was $M.")
end
return M
end
function _get_M(::JuMP.AbstractJuMPScalar, ::Union{_MOI.Interval, _MOI.EqualTo, _MOI.Zeros}, method::BigM)
function _get_M(::AbstractJuMPScalar, ::Union{_MOI.Interval, _MOI.EqualTo, _MOI.Zeros}, method::BigM)
M = method.value
if isinf(M)
error("A finite Big-M value must be used. The value given was $M.")
Expand All @@ -37,64 +37,64 @@ function _get_M(::JuMP.AbstractJuMPScalar, ::Union{_MOI.Interval, _MOI.EqualTo,
end

# Apply interval arithmetic on a linear constraint to infer the tightest Big-M value from the bounds on the constraint.
function _calculate_tight_M(func::JuMP.AffExpr, set::_MOI.LessThan, method::BigM)
function _calculate_tight_M(func::AffExpr, set::_MOI.LessThan, method::BigM)
return _interval_arithmetic_LessThan(func, -set.upper, method)
end
function _calculate_tight_M(func::JuMP.AffExpr, set::_MOI.GreaterThan, method::BigM)
function _calculate_tight_M(func::AffExpr, set::_MOI.GreaterThan, method::BigM)
return _interval_arithmetic_GreaterThan(func, -set.lower, method)
end
function _calculate_tight_M(func::JuMP.AffExpr, ::_MOI.Nonpositives, method::BigM)
function _calculate_tight_M(func::AffExpr, ::_MOI.Nonpositives, method::BigM)
return _interval_arithmetic_LessThan(func, 0.0, method)
end
function _calculate_tight_M(func::JuMP.AffExpr, ::_MOI.Nonnegatives, method::BigM)
function _calculate_tight_M(func::AffExpr, ::_MOI.Nonnegatives, method::BigM)
return _interval_arithmetic_GreaterThan(func, 0.0, method)
end
function _calculate_tight_M(func::JuMP.AffExpr, set::_MOI.Interval, method::BigM)
function _calculate_tight_M(func::AffExpr, set::_MOI.Interval, method::BigM)
return (
_interval_arithmetic_GreaterThan(func, -set.lower, method),
_interval_arithmetic_LessThan(func, -set.upper, method)
)
end
function _calculate_tight_M(func::JuMP.AffExpr, set::_MOI.EqualTo, method::BigM)
function _calculate_tight_M(func::AffExpr, set::_MOI.EqualTo, method::BigM)
return (
_interval_arithmetic_GreaterThan(func, -set.value, method),
_interval_arithmetic_LessThan(func, -set.value, method)
)
end
function _calculate_tight_M(func::JuMP.AffExpr, ::_MOI.Zeros, method::BigM)
function _calculate_tight_M(func::AffExpr, ::_MOI.Zeros, method::BigM)
return (
_interval_arithmetic_GreaterThan(func, 0.0, method),
_interval_arithmetic_LessThan(func, 0.0, method)
)
end
# fallbacks for other scalar constraints
_calculate_tight_M(func::Union{JuMP.QuadExpr, JuMP.NonlinearExpr}, set::Union{_MOI.Interval, _MOI.EqualTo, _MOI.Zeros}, method::BigM) = (Inf, Inf)
_calculate_tight_M(func::Union{JuMP.QuadExpr, JuMP.NonlinearExpr}, set::Union{_MOI.LessThan, _MOI.GreaterThan, _MOI.Nonnegatives, _MOI.Nonpositives}, method::BigM) = Inf
_calculate_tight_M(func::Union{QuadExpr, NonlinearExpr}, set::Union{_MOI.Interval, _MOI.EqualTo, _MOI.Zeros}, method::BigM) = (Inf, Inf)
_calculate_tight_M(func::Union{QuadExpr, NonlinearExpr}, set::Union{_MOI.LessThan, _MOI.GreaterThan, _MOI.Nonnegatives, _MOI.Nonpositives}, method::BigM) = Inf
_calculate_tight_M(func, set, method::BigM) = error("BigM method not implemented for constraint type $(typeof(func)) in $(typeof(set))")

# get variable bounds for interval arithmetic
function _update_variable_bounds(vref::JuMP.VariableRef, method::BigM)
if JuMP.is_binary(vref)
function _update_variable_bounds(vref::VariableRef, method::BigM)
if is_binary(vref)
lb = 0
elseif !JuMP.has_lower_bound(vref)
elseif !has_lower_bound(vref)
lb = -Inf
else
lb = JuMP.lower_bound(vref)
lb = lower_bound(vref)
end
if JuMP.is_binary(vref)
if is_binary(vref)
ub = 1
elseif !JuMP.has_upper_bound(vref)
elseif !has_upper_bound(vref)
ub = Inf
else
ub = JuMP.upper_bound(vref)
ub = upper_bound(vref)
end
return lb, ub
end

# perform interval arithmetic to update the initial M value
function _interval_arithmetic_LessThan(func::JuMP.AffExpr, M::Float64, method::BigM)
function _interval_arithmetic_LessThan(func::AffExpr, M::Float64, method::BigM)
for (var,coeff) in func.terms
JuMP.is_binary(var) && continue #skip binary variables
is_binary(var) && continue #skip binary variables
if coeff > 0
M += coeff*method.variable_bounds[var][2]
else
Expand All @@ -103,9 +103,9 @@ function _interval_arithmetic_LessThan(func::JuMP.AffExpr, M::Float64, method::B
end
return M + func.constant
end
function _interval_arithmetic_GreaterThan(func::JuMP.AffExpr, M::Float64, method::BigM)
function _interval_arithmetic_GreaterThan(func::AffExpr, M::Float64, method::BigM)
for (var,coeff) in func.terms
JuMP.is_binary(var) && continue #skip binary variables
is_binary(var) && continue #skip binary variables
if coeff < 0
M += coeff*method.variable_bounds[var][2]
else
Expand All @@ -119,81 +119,81 @@ end
# BIG-M REFORMULATION
################################################################################
function reformulate_disjunct_constraint(
model::JuMP.Model,
con::JuMP.ScalarConstraint{T, S},
bvref::JuMP.VariableRef,
model::Model,
con::ScalarConstraint{T, S},
bvref::VariableRef,
method::BigM
) where {T, S <: _MOI.LessThan}
M = _get_M_value(con.func, con.set, method)
new_func = JuMP.@expression(model, con.func - M*(1-bvref))
reform_con = JuMP.build_constraint(error, new_func, con.set)
new_func = @expression(model, con.func - M*(1-bvref))
reform_con = build_constraint(error, new_func, con.set)
return [reform_con]
end
function reformulate_disjunct_constraint(
model::JuMP.Model,
con::JuMP.VectorConstraint{T, S, R},
bvref::JuMP.VariableRef,
model::Model,
con::VectorConstraint{T, S, R},
bvref::VariableRef,
method::BigM
) where {T, S <: _MOI.Nonpositives, R}
M = [_get_M_value(func, con.set, method) for func in con.func]
new_func = JuMP.@expression(model, [i=1:con.set.dimension],
new_func = @expression(model, [i=1:con.set.dimension],
con.func[i] - M[i]*(1-bvref)
)
reform_con = JuMP.build_constraint(error, new_func, con.set)
reform_con = build_constraint(error, new_func, con.set)
return [reform_con]
end
function reformulate_disjunct_constraint(
model::JuMP.Model,
con::JuMP.ScalarConstraint{T, S},
bvref::JuMP.VariableRef,
model::Model,
con::ScalarConstraint{T, S},
bvref::VariableRef,
method::BigM
) where {T, S <: _MOI.GreaterThan}
M = _get_M_value(con.func, con.set, method)
new_func = JuMP.@expression(model, con.func + M*(1-bvref))
reform_con = JuMP.build_constraint(error, new_func, con.set)
new_func = @expression(model, con.func + M*(1-bvref))
reform_con = build_constraint(error, new_func, con.set)
return [reform_con]
end
function reformulate_disjunct_constraint(
model::JuMP.Model,
con::JuMP.VectorConstraint{T, S, R},
bvref::JuMP.VariableRef,
model::Model,
con::VectorConstraint{T, S, R},
bvref::VariableRef,
method::BigM
) where {T, S <: _MOI.Nonnegatives, R}
M = [_get_M_value(func, con.set, method) for func in con.func]
new_func = JuMP.@expression(model, [i=1:con.set.dimension],
new_func = @expression(model, [i=1:con.set.dimension],
con.func[i] + M[i]*(1-bvref)
)
reform_con = JuMP.build_constraint(error, new_func, con.set)
reform_con = build_constraint(error, new_func, con.set)
return [reform_con]
end
function reformulate_disjunct_constraint(
model::JuMP.Model,
con::JuMP.ScalarConstraint{T, S},
bvref::JuMP.VariableRef,
model::Model,
con::ScalarConstraint{T, S},
bvref::VariableRef,
method::BigM
) where {T, S <: Union{_MOI.Interval, _MOI.EqualTo}}
M = _get_M_value(con.func, con.set, method)
new_func_gt = JuMP.@expression(model, con.func + M[1]*(1-bvref))
new_func_lt = JuMP.@expression(model, con.func - M[2]*(1-bvref))
new_func_gt = @expression(model, con.func + M[1]*(1-bvref))
new_func_lt = @expression(model, con.func - M[2]*(1-bvref))
set_values = _set_values(con.set)
reform_con_gt = JuMP.build_constraint(error, new_func_gt, _MOI.GreaterThan(set_values[1]))
reform_con_lt = JuMP.build_constraint(error, new_func_lt, _MOI.LessThan(set_values[2]))
reform_con_gt = build_constraint(error, new_func_gt, _MOI.GreaterThan(set_values[1]))
reform_con_lt = build_constraint(error, new_func_lt, _MOI.LessThan(set_values[2]))
return [reform_con_gt, reform_con_lt]
end
function reformulate_disjunct_constraint(
model::JuMP.Model,
con::JuMP.VectorConstraint{T, S, R},
bvref::JuMP.VariableRef,
model::Model,
con::VectorConstraint{T, S, R},
bvref::VariableRef,
method::BigM
) where {T, S <: _MOI.Zeros, R}
M = [_get_M_value(func, con.set, method) for func in con.func]
new_func_nn = JuMP.@expression(model, [i=1:con.set.dimension],
new_func_nn = @expression(model, [i=1:con.set.dimension],
con.func[i] + M[i][1]*(1-bvref)
)
new_func_np = JuMP.@expression(model, [i=1:con.set.dimension],
new_func_np = @expression(model, [i=1:con.set.dimension],
con.func[i] - M[i][2]*(1-bvref)
)
reform_con_nn = JuMP.build_constraint(error, new_func_nn, _MOI.Nonnegatives(con.set.dimension))
reform_con_np = JuMP.build_constraint(error, new_func_np, _MOI.Nonpositives(con.set.dimension))
reform_con_nn = build_constraint(error, new_func_nn, _MOI.Nonnegatives(con.set.dimension))
reform_con_np = build_constraint(error, new_func_np, _MOI.Nonpositives(con.set.dimension))
return [reform_con_nn, reform_con_np]
end
Loading
Loading