-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
97 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,97 @@ | ||
########################################################################### | ||
##### Code for Figure.2 ##### | ||
##### Hongbo Liu ([email protected]) ##### | ||
########################################################################### | ||
|
||
|
||
########################################################################### | ||
##### Code for Figure.2a ##### | ||
########################################################################### | ||
##### Note: Manhattan plot of eGFRcrea GWAS of 1,508,659 individuals. X-axis is chromosomal location of SNP | ||
library(ggman) | ||
GWAS <- read.table(gzfile("GWAS.forManhattanPlot.txt.gz"), header=T, sep="\t") | ||
colnames(GWAS) <- c("CHR","POS","SNP","PVAL") | ||
GWAS[which(GWAS$PVAL < 1e-150),4] = 1e-150 | ||
IndependentLoci <- read.table(gzfile("Independent.Loci.txt.gz"), header=T, sep="\t") | ||
|
||
p1 <- ggman(GWAS, sigLine = 7.30103, snp = "SNP", bp = "POS", chrom = "CHR", pvalue = "PVAL", relative.positions = TRUE) + scale_color_manual(values=c("deepskyblue4", "goldenrod3")) + theme(text = element_text(size = 20), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), panel.background = element_blank(), axis.line = element_line(colour = "black")) | ||
p2 <- ggmanHighlight(p1, highlight = as.character(GWAS.Lead$MarkerName), colour = "darkcyan", size = 2, stroke = 0) | ||
p3 <- ggmanHighlight(p2, highlight = as.character(GWAS.Lead.Close2Known$MarkerName), colour = "darkcyan", size = 2, stroke = 0) | ||
p3 <- ggmanHighlight(p3, highlight = as.character(GWAS.Lead.Novel$MarkerName), colour = "red", size = 3, stroke = 0) | ||
|
||
GWAS.Lead.Novel <- subset(GWAS.Lead, Group == "2_Novel") | ||
GWAS.Lead.Novel.TopPrioritizedGene <- subset(GWAS.Lead.Novel, TopPrioritizedGene != "") | ||
GWAS.Lead.Novel.NoTopPrioritizedGene <- subset(GWAS.Lead.Novel, TopPrioritizedGene == "") | ||
GWAS.Lead.Novel.NoTopPrioritizedGene$TopPrioritizedGene <- GWAS.Lead.Novel.NoTopPrioritizedGene$Cloest.Gene | ||
GWAS.Lead.Novel <- rbind(GWAS.Lead.Novel.TopPrioritizedGene, GWAS.Lead.Novel.NoTopPrioritizedGene) | ||
|
||
p4 <- ggmanLabel(p3, labelDfm = GWAS.Lead.Novel, snp = "MarkerName", label = "TopPrioritizedGene", type = "text", colour = "white", fontface = 'italic', size = 3.5, | ||
nudge_y = 75, | ||
max.iter = 5000, | ||
vjust=1, | ||
direction='y', | ||
nudge_x=0.1, | ||
segment.color = "grey50", | ||
segment.alpha = 0.5, | ||
segment.size = 0.2) | ||
|
||
jpeg('Figure.2a.jpg', width = 12, height = 4.5, units = 'in', res = 500, quality = 100) | ||
p4 | ||
dev.off() | ||
|
||
|
||
|
||
########################################################################### | ||
##### Code for Figure.2b ##### | ||
########################################################################### | ||
##### Note: Scatter plot of minor allele frequency and effect size (absolute) of lead variants from 878 eGFRcrea GWAS loci. | ||
##### Cyan represents loci overlapping or being physically nearby (within 500kb or LD R2 > 0.001) previously reported sentinel variants, and red novel loci. | ||
library(ggplot2) | ||
IndependentLoci <- read.table("Independent.Loci.txt", header=T, sep="\t") | ||
dim(IndependentLoci) | ||
IndependentLoci$absBETA <- abs(IndependentLoci$BETA) | ||
|
||
pdf(file='Figure.2b.pdf', width=7,height=6) | ||
ggplot(IndependentLoci, aes(x = MAF, y = absBETA)) + | ||
geom_point(aes(color = Status),size = 1.5) + | ||
scale_y_continuous(breaks=seq(0, 0.16, by = 0.02), limits = c(0, 0.16)) + | ||
scale_color_manual(values = c("darkcyan", "red")) + | ||
theme_bw(base_size = 16) + | ||
theme(panel.border = element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), axis.line = element_line(colour = "black"), legend.position = c(0.9, 0.90)) | ||
dev.off() | ||
|
||
|
||
|
||
########################################################################### | ||
##### Code for Figure.2c ##### | ||
########################################################################### | ||
##### Note: Human kidney eQTL Manhattan plot (n= 686 kidney samples) | ||
library(qqman) | ||
|
||
eQTL <- read.table("eQTL.forManhattanPlot.txt", header=T, sep="\t"); colnames(eQTL) <- c("CHR","POS","SNP","PVAL") | ||
eQTL[which(eQTL$PVAL < 4.27e-308),4] = 4.27e-308 | ||
|
||
library(qqman) | ||
jpeg('Figure.2c.jpg', width = 20, height = 5, units = 'in', res = 500, quality = 100) | ||
manhattan(eQTL, chr="CHR", bp="POS", snp="SNP", p="PVAL", col = c("deepskyblue4", "goldenrod3"), suggestiveline = F, genomewideline = F, cex = 0.1, main = "Manhattan Plot") | ||
dev.off() | ||
|
||
|
||
########################################################################### | ||
##### Code for Figure.2d ##### | ||
########################################################################### | ||
##### Note: Enrichment of kidney specific eQTL SNPs to GWAS traits | ||
library(ggplot2) | ||
library(ggrepel) | ||
|
||
Kidney.Specific.eQTL.2GWAS <- read.table("Kidney.Specific.eQTL.2GWAS.txt", header=T, sep="\t") | ||
Kidney.Specific.eQTL.2GWAS$Minus_log10P <- -log10(Kidney.Specific.eQTL.2GWAS$chisq.test.p) | ||
|
||
p1 <- ggplot(Kidney.Specific.eQTL.2GWAS, aes(x=fisher.test.oddsRatio, y=Minus_log10P, label = GWAS_Traits)) + geom_point() + ggtitle("Enrichment of Kidney Specific eQTL SNPs in GWAS traits") + theme(legend.position="none") + theme_bw() + theme(panel.border = element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), axis.line = element_line(colour = "black")) | ||
p2 <- p1 + xlab("Odds Ratio") + ylab("-log10(p)") | ||
p3 <- p2 + geom_point(aes(size = SNPNum, color = Trait_category)) + scale_size_continuous(name = "SNP Num", range = c(1, 5)) + geom_hline(yintercept= -log10(0.05), linetype="dashed", color = "gray") + geom_vline(xintercept= 1, linetype="dashed", color = "gray") | ||
|
||
pdf(file='Figure.2d.pdf',width=4.6,height=3.7) | ||
p3 + geom_text_repel(data = subset(Kidney.Specific.eQTL.2GWAS,Minus_log10P > 100 & fisher.test.oddsRatio>1.5 & Trait_category == "Renal"), size = 4) + ylim(0,305) | ||
dev.off() | ||
|