Skip to content

harshit37/Dimensionality-Reduction-using-PCA-LDA-and-t-SNE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 

Repository files navigation

Dimensionality-Reduction-using-PCA-LDA-and-t-SNE

  • Report consists of inferences gathered after implementing dimensionality reduction techniques like Principal Component analysis(PCA) , Linear Discriminant Analysis(LDA) , t-sNE(t-distributed stochastic neighbor estimation) and a maximal margin classifier (Support Vector Machine - SVM) on datasets like Labelled Faces In Wild(LFW) and the infamous Fischer Iris data.
  • Python notebook has the corresponding code .