a semi-structured guide to pursuing data science formed after hours of googling
- Install conda or miniconda.
- Create the environment: With GPU (Windows):
With CPU (Windows):
conda env create -f environment.yml [TODO]
conda env create -f environment_cpu.yml [TODO]
- Make sure you can activate the environment:
conda activate [pytorch/tensorflow]-[gpu/cpu]
- cd into the relevant directory
cd [category]/[book]
- And run the tests:
python check_cuda.py python check_cpu.py
-
Calculus, Linear Algebra, ODEs/PDEs
-
Cloud tool (AWS, GCP, Azure, etc...)
-
[TODO] data engineering/warehousing
- IBM Data Science Professional Certificate
- Machine Learning Specialization - Andrew Ng
- Deep Learning Specialization - Andrew Ng
- Registry of Open Data on AWS
- OpenML
- UC Irvine Machine Learning Repository
- The Open Science Framework
- DATA.NASA.GOV
- U.S. Government's Open Data
- Office for National Statistics
- Papers With Code
- Hugging Face
- Kaggle
- GitHub awesome-public-datasets
- Databar
- Reddit r/statistics
- Google Dataset Search
Course Texts:
- K. Korb and A. Nicholson, Bayesian Artificial Intelligence. (UCSD CSE 150a)
- S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. (UCSD CSE 150a) (UCSD CSE 150b) (UCM CSE176)
- R. Sutton and A. Barto, Reinforcement Learning: An Introduction. (UCSD CSE 150a)
- The Elements of Statistical Learning by Trevor Hastie, Robert Tibshirani, and Jerome Friedman. (UCSD CSE 151a)
- Data Mining: Concepts and Techniques by Jiawei Han et al. (UCSD CSE 151a)
- Pattern Recognition and Machine Learning by Christopher M. Bishop. (UCSD CSE 151a)
- Dive into Deep Learning book by Aston Zhang et al. (UCSD CSE 151a)
- Deep Learning (UCSD CSE 151b)
- Machine Learning Crash Course (UCSD CSE 151b)
- Learning From Data (UCSD CSE 151b)
- G. James, D. Witten, T. Hastie and R. Tibshirani: An Introduction to Statistical Learning, with Applications in R, 2nd ed. Springer, 2021 (UCM CSE176)
- R. O. Duda, P. E. Hart and D. G. Stork: Pattern Classification, 2nd ed. Wiley, 2001. (UCM CSE176)
- P. A. Flach: Machine Learning. The Art and Science of Algorithms That Make Sense of Data. Cambridge University Press, 2012 (UCM CSE176)
- S. Marsland: Machine Learning: An Algorithmic Perspective, 2nd ed. Chapman and Hall/CRC Press, 2014 (UCM CSE176)
- T. M. Mitchell: Machine Learning. McGraw-Hill, 1997 (UCM CSE176)