The genetic neural architecture search (GeneticNAS) is a neural architecture search method that is based on genetic algorithm which utilized weight sharing accross all candidate network. The project paper:https://arxiv.org/abs/1907.02871
Includes code for CIFAR-10 and CIFAR-100 image classification
The first is install all the flowing prerequisites using conda:
- pytorch
- graphviz
- pygraphviz
- numpy
conda install graphviz
conda install pytorch torchvision cudatoolkit=9.0 -c pytorch
conda install pygraphviz
conda install numpy
In this section provide exmaple of how to run architecture search on there dataset CIFAR10 and CIFAR100, at the end of search a log folder is create under the current folder
python main.py --dataset_name CIFAR10 --config_file ./configs/config_cnn_search_cifar10.json
python main.py --dataset_name CIFAR100 --config_file ./configs/config_cnn_search_cifar100.json
In this section provide exmaple of how to run final training search on there dataset CIFAR10 and CIFAR100, where $LOG_DIR is the log folder of the search result.
python main.py --dataset_name CIFAR10 --final 1 --serach_dir $LOG_DIR --config_file ./configs/config_cnn_final_cifar10.json
python main.py --dataset_name CIFAR100 --final 1 --serach_dir $LOG_DIR --config_file ./configs/config_cnn_final_cifar10.json
Dataset | Accuracy[%] |
---|---|
CIFAR10 | 96% |
CIFAR100 | 80.1% |