#Algorithms in Python
这是学习笔记Algorithms,欢迎访问。
这个项目的教材基于Algorithms by Sanjoy Dasgupta & Christos Papadimitriou & Umesh Vazirani,可以从这里翻阅。
所有的算法实现语言均为Python
,在Python2.6.6
的环境下均能测试通过。
##关于实现
基本上所有的实现方案都是照抄书上的伪代码_ (:3」∠)_ 让人感觉Python真是简单易懂,写出来的代码跟书上的伪代码没差嘛!所以,嗯,也就是说, 这些实现都只是玩具,不要用到实际环境中 。
比如说,关于求(x**y) % z
,在 modular_arithmetic.py
中有函数 modexp(x, y, z)
,但我觉得你不用想都知道,肯定还是 pow(x, y[, z])
来得更快。再比如UniHashing类,肯定也没有dict类高效且经得起碰撞。
所以,这些都是玩具= =
##目前进度:
- Chapter 0: Prologue
- Fibonacci numbers
fibonacci.py
- Fibonacci numbers
- Chapter 1: Algorithms with numbers
- Basic arithmetic
basic_arithmetic.py
- modular arithmetic
modular_arithmetic.py
- Euclid's algorithm
euclid.py
- Primality test
primality.py
- Generating primes
primality.py
- RSA
rsa.py
- Universal hashing
hashing.py
- Basic arithmetic
- Chapter 2: Divide-and-conquer algorithms
- divide-and-conquer multiplication
basic_arithmetic.py
- Mergesort
mergesort.py
- the fast Fourier transform
fft.py
- Polynomial multiplication
fft.py
- divide-and-conquer multiplication
- Chapter 3: Decompositions of graphs
- Depth-first search
dfs.py
- Depth-first search
- Chapter 4: Paths in graphs
- Breadth-first search
bfs.py
- Dijkstra's shortest-path algorithm
shortest_path.py
- Bellman-Ford algorithm for single-source shortest path
shortest_path.py
- Breadth-first search
- Chapter 5: Greedy algorithms
- Kruskal's mininum spanning tree algorithm
mst.py
- Prim's mininum spanning tree algorithm
binary_heap.py
mst.py
- Huffman encoding
huffman.py
- Kruskal's mininum spanning tree algorithm
- Chapter 6: Dynamic programming
- Edit distance
edit_distance.py
- Edit distance