Skip to content

Commit

Permalink
Update metric calculation to work with just probabilities
Browse files Browse the repository at this point in the history
  • Loading branch information
mn-mikke committed Apr 12, 2022
1 parent ac80398 commit e2fc466
Show file tree
Hide file tree
Showing 8 changed files with 168 additions and 51 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -20,8 +20,8 @@ package ai.h2o.sparkling.ml.metrics
import ai.h2o.sparkling.ml.algos._
import ai.h2o.sparkling.ml.models.{H2OGBMMOJOModel, H2OGLMMOJOModel, H2OMOJOModel}
import ai.h2o.sparkling.{SharedH2OTestContext, TestUtils}
import org.apache.spark.sql.functions.rand
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions.{rand, col}
import org.apache.spark.sql.{DataFrame, SparkSession}
import org.apache.spark.sql.types._
import org.junit.runner.RunWith
import org.scalatest.junit.JUnitRunner
Expand Down Expand Up @@ -196,6 +196,42 @@ class BinomialMetricsTestSuite extends FunSuite with Matchers with SharedH2OTest
validationMetricsTolerance)
}

test(s"test calculation of binomial $algorithmName metrics with probabilities passed to predictionCol") {
val algorithm = algorithmGetter()
algorithm
.setValidationDataFrame(validationDataset)
.set(algorithm.getParam("seed"), 1L)
.setFeaturesCols("AGE", "RACE", "DPROS", "DCAPS", "PSA", "VOL", "GLEASON")
.setLabelCol("CAPSULE")

val model = algorithm.fit(trainingDataset)
val domain = model.getDomainValues()("CAPSULE")

def extractProbability(df: DataFrame): DataFrame = {
df.withColumn("probability", col(s"detailed_prediction.probabilities.${domain(1)}"))
}

val trainingMetricObject =
H2OBinomialMetrics.calculate(
extractProbability(model.transform(trainingDataset)),
domain,
labelCol = "CAPSULE",
predictionCol = "probability")
val validationMetricObject =
H2OBinomialMetrics.calculate(
extractProbability(model.transform(validationDataset)),
domain,
labelCol = "CAPSULE",
predictionCol = "probability")

assertMetrics(
model,
trainingMetricObject,
validationMetricObject,
trainingMetricsTolerance,
validationMetricsTolerance)
}

test(s"test calculation of binomial $algorithmName metrics with weightCol set on arbitrary dataset") {
val algorithm = algorithmGetter()
algorithm
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -20,11 +20,13 @@ package ai.h2o.sparkling.ml.metrics
import ai.h2o.sparkling.ml.algos._
import ai.h2o.sparkling.ml.models.{H2OGBMMOJOModel, H2OGLMMOJOModel, H2OMOJOModel}
import ai.h2o.sparkling.{SharedH2OTestContext, TestUtils}
import hex.genmodel.GenModel
import org.apache.spark.sql.{DataFrame, SparkSession}
import org.apache.spark.sql.functions.{monotonically_increasing_id, rand}
import org.apache.spark.sql.functions.{monotonically_increasing_id, rand, udf}
import org.junit.runner.RunWith
import org.scalatest.junit.JUnitRunner
import org.scalatest.{FunSuite, Matchers}
import org.apache.spark.sql.functions.{array, col}

@RunWith(classOf[JUnitRunner])
class MultinomialMetricsTestSuite extends FunSuite with Matchers with SharedH2OTestContext {
Expand Down Expand Up @@ -189,6 +191,47 @@ class MultinomialMetricsTestSuite extends FunSuite with Matchers with SharedH2OT
validationMetricsTolerance)
}

test(s"test calculation of multinomial $algorithmName metrics with just probabilities") {
val algorithm = algorithmGetter()
algorithm
.setValidationDataFrame(validationDataset)
.set(algorithm.getParam("seed"), 1L)
.setFeaturesCols("sepal_len", "sepal_wid", "petal_len", "petal_wid")
.setColumnsToCategorical("class")
.set(algorithm.getParam("aucType"), "MACRO_OVR")
.setLabelCol("class")

val model = algorithm.fit(trainingDataset)
val priorClassDistribution = model.unwrapMojoModel()._priorClassDistrib
val domain = model.getDomainValues()("class")
def extractProbabilities(df: DataFrame) = {
val columns = domain.map(label => col(s"detailed_prediction.probabilities.$label"))
df.withColumn("probabilities", array(columns: _*))
}

val trainingMetricObject =
H2OMultinomialMetrics.calculate(
extractProbabilities(model.transform(trainingDataset)),
domain,
labelCol = "class",
predictionCol = "probabilities",
aucType = "MACRO_OVR")
val validationMetricObject =
H2OMultinomialMetrics.calculate(
extractProbabilities(model.transform(validationDataset)),
domain,
labelCol = "class",
predictionCol = "probabilities",
aucType = "MACRO_OVR")

assertMetrics(
model,
trainingMetricObject,
validationMetricObject,
trainingMetricsTolerance,
validationMetricsTolerance)
}

test(s"test calculation of multinomial $algorithmName metrics with weightCol set on arbitrary dataset") {
val algorithm = algorithmGetter()
algorithm
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -36,9 +36,8 @@ def calculate(dataFrame,
:param domain: A list of classes representing negative and positive response. Negative class must at position 0
and positive at 1
:param predictionCol: The name of prediction column. The prediction column must have the same type as
a detailed_prediction column coming from the transform method of H2OMOJOModel descendant or a array type or
vector of doubles. First item is must be 0.0 or 1.0 representing negative or positive response. The other items
must be probabilities to predict given probability classes.
a detailed_prediction column coming from the transform method of H2OMOJOModel descendant. Or the type must
be FloatType/DoubleType where values represent probabilities of the positive response.
:param labelCol: The name of label column that contains actual values.
:param weightCol: The name of a weight column.
:param offsetCol: The name of a offset column.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -35,9 +35,9 @@ def calculate(dataFrame,
:param dataFrame: A data frame with predictions and actual values.
:param domain: List of response classes.
:param predictionCol: The name of prediction column. The prediction column must have the same type as
a detailed_prediction column coming from the transform method of H2OMOJOModel descendant or a array type or
vector of doubles. First item is must be 0.0, 1.0, 2.0 representing indexes of response classes. The other
items must be probabilities to predict given probability classes.
a detailed_prediction column coming from the transform method of H2OMOJOModel descendant or
a array type or vector of doubles where particular arrays represent class probabilities.
The order of probabilities must correspond to the order of labels in the passed domain.
:param labelCol: The name of label column that contains actual values.
:param weightCol: The name of a weight column.
:param aucType: Type of multinomial AUC/AUCPR calculation. Possible values:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,6 @@
package ai.h2o.sparkling.ml.metrics

import hex.ModelMetricsBinomial.MetricBuilderBinomial
import org.apache.spark.{ExposeUtils, ml, mllib}
import org.apache.spark.ml.util.Identifiable
import org.apache.spark.sql.types._
import org.apache.spark.sql.{DataFrame, Row}
Expand All @@ -41,10 +40,9 @@ object H2OBinomialMetrics extends MetricCalculation {
* @param domain Array of classes representing negative and positive response. Negative class must at position 0 and
* positive at 1.
* @param predictionCol The name of prediction column. The prediction column must have the same type as
* a detailed_prediction column coming from the transform method of H2OMOJOModel descendant or
* a array type or vector of doubles. First item is must be 0.0 or 1.0 representing
* negative or positive response. The other items must be probabilities to predict given probability
* classes.
* a detailed_prediction column coming from the transform method of H2OMOJOModel descendant.
* Or the type must be FloatType/DoubleType where values represent probabilities of
* the positive response.
* @param labelCol The name of label column that contains actual values.
* @param weightColOption The name of a weight column.
* @param offsetColOption The name of a offset column.
Expand All @@ -57,7 +55,7 @@ object H2OBinomialMetrics extends MetricCalculation {
labelCol: String = "label",
weightColOption: Option[String] = None,
offsetColOption: Option[String] = None): H2OBinomialMetrics = {
validateDataFrameForMetricCalculation(dataFrame, predictionCol, labelCol, offsetColOption, weightColOption)
validateDataFrameForMetricCalculation(dataFrame, domain, predictionCol, labelCol, offsetColOption, weightColOption)
val getMetricBuilder = () => new MetricBuilderBinomial(domain)
val castedLabelDF = dataFrame.withColumn(labelCol, col(labelCol) cast StringType)

Expand Down Expand Up @@ -100,50 +98,62 @@ object H2OBinomialMetrics extends MetricCalculation {
dataType match {
case StructType(fields)
if fields(0).dataType == StringType && fields(1).dataType.isInstanceOf[StructType] &&
fields(1).dataType.asInstanceOf[StructType].fields.forall(_.dataType == DoubleType) =>
fields(1).dataType.asInstanceOf[StructType].fields.forall(_.dataType == DoubleType) &&
fields(1).dataType.asInstanceOf[StructType].fields.length == 2 =>
val predictionStructure = row.getStruct(0)
val prediction = predictionStructure.getString(0)
val index = domain.indexOf(prediction).toDouble
val probabilities = predictionStructure.getStruct(1)

Array(index) ++ probabilities.toSeq.map(_.asInstanceOf[Double])
case ArrayType(DoubleType, _) => row.getSeq[Double](0).toArray
case ArrayType(FloatType, _) => row.getSeq[Float](0).map(_.toDouble).toArray
case v if ExposeUtils.isMLVectorUDT(v) => row.getAs[ml.linalg.Vector](0).toDense.values
case _: mllib.linalg.VectorUDT => row.getAs[mllib.linalg.Vector](0).toDense.values
case StructType(fields) if fields.forall(_.dataType == DoubleType) && fields.length == 2 =>
val probabilities = row.getStruct(0)
Array(-1.0) ++ probabilities.toSeq.map(_.asInstanceOf[Double])
case DoubleType => probabilityToArray(row.getDouble(0))
case FloatType => probabilityToArray(row.getFloat(0).toDouble)
}
}

private def probabilityToArray(probability: Double): Array[Double] = {
Array[Double](-1 /* unused */, 1 - probability, probability)
}

override protected def getActualValue(dataType: DataType, domain: Array[String], row: Row): Double = {
val label = row.getString(1)
domain.indexOf(label).toDouble
}

override protected def validateDataFrameForMetricCalculation(
dataFrame: DataFrame,
domain: Array[String],
predictionCol: String,
labelCol: String,
offsetColOption: Option[String],
weightColOption: Option[String]): Unit = {
super.validateDataFrameForMetricCalculation(dataFrame, predictionCol, labelCol, offsetColOption, weightColOption)
super.validateDataFrameForMetricCalculation(
dataFrame,
domain,
predictionCol,
labelCol,
offsetColOption,
weightColOption)
val predictionType = dataFrame.schema.fields.find(_.name == predictionCol).get.dataType
val isPredictionTypeValid = predictionType match {
case StructType(fields)
if fields(0).dataType == StringType && fields(1).dataType.isInstanceOf[StructType] &&
fields(1).dataType.asInstanceOf[StructType].fields.forall(_.dataType == DoubleType) =>
fields(1).dataType.asInstanceOf[StructType].fields.forall(_.dataType == DoubleType) &&
fields(1).dataType.asInstanceOf[StructType].fields.length == 2 =>
true
case ArrayType(DoubleType, _) => true
case ArrayType(FloatType, _) => true
case v if ExposeUtils.isMLVectorUDT(v) => true
case _: mllib.linalg.VectorUDT => true
case StructType(fields) if fields.forall(_.dataType == DoubleType) && fields.length == 2 => true
case DoubleType => true
case FloatType => true
case _ => false
}
if (!isPredictionTypeValid) {
throw new IllegalArgumentException(s"The type of the prediction column '$predictionCol' is not valid. " +
"The prediction column must have the same type as a detailed_prediction column coming from the transform " +
"method of H2OMOJOModel descendant or a array type or vector of doubles. First item is must be 0.0 or 1.0" +
"representing negative or positive response. The other items must be probabilities to predict given probability" +
"classes.")
throw new IllegalArgumentException(
s"The type of the prediction column '$predictionCol' is not valid. " +
"The prediction column must have the same type as a detailed_prediction column coming from the transform " +
"method of H2OMOJOModel descendant or a array type or vector of doubles. Or the type must be " +
"FloatType/DoubleType where values represent probabilities of positive response.")
}
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -19,10 +19,11 @@ package ai.h2o.sparkling.ml.metrics

import hex.ModelMetricsMultinomial.MetricBuilderMultinomial
import hex.MultinomialAucType
import hex.genmodel.GenModel
import org.apache.spark.{ExposeUtils, ml, mllib}
import org.apache.spark.ml.util.Identifiable
import org.apache.spark.sql.functions.col
import org.apache.spark.sql.{DataFrame, Dataset, Row}
import org.apache.spark.sql.{DataFrame, Row}
import org.apache.spark.sql.types.{ArrayType, DataType, DoubleType, FloatType, StringType, StructType}

@MetricsDescription(
Expand All @@ -42,9 +43,8 @@ object H2OMultinomialMetrics extends MetricCalculation {
* @param domain Array of response classes.
* @param predictionCol The name of prediction column. The prediction column must have the same type as
* a detailed_prediction column coming from the transform method of H2OMOJOModel descendant or
* a array type or vector of doubles. First item is must be 0.0, 1.0, 2.0 representing
* indexes of response classes. The other items must be probabilities to predict given probability
* classes.
* a array type or vector of doubles where particular arrays represent class probabilities.
* The order of probabilities must correspond to the order of labels in the passed domain.
* @param labelCol The name of label column that contains actual values.
* @param weightColOption The name of a weight column.
* @param aucType Type of multinomial AUC/AUCPR calculation. Possible values:
Expand All @@ -63,7 +63,7 @@ object H2OMultinomialMetrics extends MetricCalculation {
labelCol: String = "label",
weightColOption: Option[String] = None,
aucType: String = "AUTO"): H2OMultinomialMetrics = {
validateDataFrameForMetricCalculation(dataFrame, predictionCol, labelCol, None, weightColOption)
validateDataFrameForMetricCalculation(dataFrame, domain, predictionCol, labelCol, None, weightColOption)
val aucTypeEnum = MultinomialAucType.valueOf(aucType)
val nclasses = domain.length
val getMetricBuilder =
Expand Down Expand Up @@ -109,37 +109,60 @@ object H2OMultinomialMetrics extends MetricCalculation {
dataType match {
case StructType(fields)
if fields(0).dataType == StringType && fields(1).dataType.isInstanceOf[StructType] &&
fields(1).dataType.asInstanceOf[StructType].fields.forall(_.dataType == DoubleType) =>
fields(1).dataType.asInstanceOf[StructType].fields.forall(_.dataType == DoubleType) &&
fields(1).dataType.asInstanceOf[StructType].fields.length == domain.length =>
val predictionStructure = row.getStruct(0)
val prediction = predictionStructure.getString(0)
val index = domain.indexOf(prediction).toDouble
val probabilities = predictionStructure.getStruct(1)

Array(index) ++ probabilities.toSeq.map(_.asInstanceOf[Double])
case ArrayType(DoubleType, _) => row.getSeq[Double](0).toArray
case ArrayType(FloatType, _) => row.getSeq[Float](0).map(_.toDouble).toArray
case v if ExposeUtils.isMLVectorUDT(v) => row.getAs[ml.linalg.Vector](0).toDense.values
case _: mllib.linalg.VectorUDT => row.getAs[mllib.linalg.Vector](0).toDense.values
case StructType(fields) if fields.forall(_.dataType == DoubleType) && fields.length == domain.length =>
val probabilities = row.getStruct(0).toSeq.map(_.asInstanceOf[Double]).toArray
probabilitiesToPredictedValues(probabilities)
case ArrayType(DoubleType, _) => probabilitiesToPredictedValues(row.getSeq[Double](0).toArray)
case ArrayType(FloatType, _) => probabilitiesToPredictedValues(row.getSeq[Float](0).map(_.toDouble).toArray)
case v if ExposeUtils.isMLVectorUDT(v) =>
probabilitiesToPredictedValues(row.getAs[ml.linalg.Vector](0).toDense.values)
case _: mllib.linalg.VectorUDT =>
probabilitiesToPredictedValues(row.getAs[mllib.linalg.Vector](0).toDense.values)
}
}

private def probabilitiesToPredictedValues(probabilities: Array[Double]): Array[Double] = {
val result = new Array[Double](probabilities.length + 1)
Array.copy(probabilities, 0, result, 1, probabilities.length)
result(0) = GenModel.getPredictionMultinomial(result, null, result).toDouble
result
}

override protected def getActualValue(dataType: DataType, domain: Array[String], row: Row): Double = {
val label = row.getString(1)
domain.indexOf(label).toDouble
}

override protected def validateDataFrameForMetricCalculation(
dataFrame: DataFrame,
domain: Array[String],
predictionCol: String,
labelCol: String,
offsetColOption: Option[String],
weightColOption: Option[String]): Unit = {
super.validateDataFrameForMetricCalculation(dataFrame, predictionCol, labelCol, offsetColOption, weightColOption)
super.validateDataFrameForMetricCalculation(
dataFrame,
domain,
predictionCol,
labelCol,
offsetColOption,
weightColOption)
val predictionType = dataFrame.schema.fields.find(_.name == predictionCol).get.dataType
val isPredictionTypeValid = predictionType match {
case StructType(fields)
if fields(0).dataType == StringType && fields(1).dataType.isInstanceOf[StructType] &&
fields(1).dataType.asInstanceOf[StructType].fields.forall(_.dataType == DoubleType) =>
fields(1).dataType.asInstanceOf[StructType].fields.forall(_.dataType == DoubleType) &&
fields(1).dataType.asInstanceOf[StructType].fields.length == domain.length =>
true
case StructType(fields) if fields.forall(_.dataType == DoubleType) && fields.length == domain.length =>
true
case ArrayType(DoubleType, _) => true
case ArrayType(FloatType, _) => true
Expand All @@ -150,9 +173,8 @@ object H2OMultinomialMetrics extends MetricCalculation {
if (!isPredictionTypeValid) {
throw new IllegalArgumentException(s"The type of the prediction column '$predictionCol' is not valid. " +
"The prediction column must have the same type as a detailed_prediction column coming from the transform " +
"method of H2OMOJOModel descendant or a array type or vector of doubles. First item is must be 0.0, 1.0, 2.0 " +
"representing indexes of response classes. The other items must be probabilities to predict given " +
"probability classes.")
"method of H2OMOJOModel descendant or a array type or vector of doubles where particular arrays represent " +
"class probabilities. The order of probabilities must correspond to the order of labels in the passed domain.")
}
}
}
Loading

0 comments on commit e2fc466

Please sign in to comment.