tencent_2017_contest_final http://algo.tpai.qq.com/home/information/index.html (2017腾讯社交广告算法大赛) dependency sudo pip install lightgbm pandas numpy sklearn fire useage ./run_phase_1.sh need: 8G RAM; 50G disk; 2 hour time; 初赛的脚本只需 8G 运行内存, 50G 硬盘空间, 整个流程只需不到 2 个小时 or ./run.sh need: 8G RAM; 500G disk; 10 hour time; 决赛的脚本同样只需 8G 运行内存, 500G 硬盘空间, 整个流程需要大约 10 个小时 notice the run.sh or run_phase_1.sh will auto download the data, auto preprocess, auto extract feature, auto run model run.sh 或 run_phase_1.sh 会自动下载数据,自动预处理,自动提取特征,自动跑模型生成submiss.csv. other solutions final 14th https://github.com/z564808896/Tencent_Social_Ads final 23th https://github.com/BladeCoda/Tencent2017_Final_Coda_Allegro