Skip to content

A new CNN Framwork Implemented from scratch by using C++

Notifications You must be signed in to change notification settings

guicunbin/Easy_understand_CNN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Easy_understand_CNN

Easy understand CNN Framwork Implemented from scratch by using C++

Usage

  • Test utils functions

cd ./test/test_utils/ && ./compile_and_run.sh

  • Get data

./data/mnist/get_mnist.sh

  • Training and testing

cd ./example/mnist/ && ./compile_and_run.sh

Defining and training your own model architecture

see the ./example/mnist/main.cpp

  • define the layer param

const LayerParameter conv1_param(LayerType::conv, 20, true, lr, lr, filler::gaussian, filler::constant, 0.01, 0.0, 7, 7,0)

  • define the layer class

conv_layer_class Conv1(conv1_param, &bottom, &tops[0]);

  • training

Conv1.Forward(&bottom, &tops[idx]); idx++; Conv1.Backward(&bottom, &tops[idx]); idx--;

  • testing

Conv1.Forward(&bottom, &tops[idx]); idx++;