Skip to content

Commit

Permalink
system shouldn'y be empty
Browse files Browse the repository at this point in the history
  • Loading branch information
5HT committed Mar 18, 2024
1 parent 7905536 commit cd32f1d
Show file tree
Hide file tree
Showing 3 changed files with 4 additions and 4 deletions.
4 changes: 2 additions & 2 deletions lib/foundations/univalent/path.anders
Original file line number Diff line number Diff line change
Expand Up @@ -118,8 +118,8 @@ def partial-app-test (A : U) (a : A) (φ : I) (p : 1= φ) : A := [(φ = 1) → a
def 0-is-min (i : I) : ≤ 0 i := ref 0
def 1-is-max (i : I) : ≤ i 1 := ref i
def ε (A : U) : Partial A 0 := []
def I-nontriv (p : Id I 0 1) : 𝟎 := ε 𝟎 (rev I 0 1 p)
def 0≥1-impl-absurd : (≥ 0 1) → 𝟎 := I-nontriv
-- def I-nontriv (p : Id I 0 1) : 𝟎 := ε 𝟎 (rev I 0 1 p)
-- def 0≥1-impl-absurd : (≥ 0 1) → 𝟎 := I-nontriv

def ≤-asymm (i j : I) (p : ≤ i j) (q : ≤ j i) : Id I i j := comp-Id I i (i ∧ j) j (rev I (i ∧ j) i p) q
def ≤-refl (i : I) : ≤ i i := ref i
Expand Down
2 changes: 1 addition & 1 deletion lib/mathematics/analysis/topology.anders
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@ module topology where

def Path₁ (A : U₁) (x y : A) := PathP (<_> A) x y
def isProp₁ (A : U₁) := Π (a b : A), Path₁ A a b
def isSet₁ (A : U₁) := Π (a b : A) (a0 b0 : Path₁ A a b), Path₁ (Path₁ A a b) a0 b0
def isSet₁ (A : U₁) := Π (a b : A) (x y : Path₁ A a b), Path₁ (Path₁ A a b) x y
def Ω := U → 𝟐
def ℙ (X: U₁) := X → Ω
axiom isSet-ℙ (X: U₁) : isSet₁ (ℙ X)
Expand Down
2 changes: 1 addition & 1 deletion src/kernel/check.ml
Original file line number Diff line number Diff line change
Expand Up @@ -557,7 +557,7 @@ and conv v1 v2 : bool = traceConv v1 v2;

and convWithSystem = function
| v, VApp (VSystem ts, _) | VApp (VSystem ts, _), v ->
System.for_all (fun mu -> conv (upd mu v)) ts
not (System.is_empty ts) && System.for_all (fun mu -> conv (upd mu v)) ts
| _, _ -> false

and convProofIrrel v1 v2 =
Expand Down

0 comments on commit cd32f1d

Please sign in to comment.