Skip to content

Commit

Permalink
equiv prop
Browse files Browse the repository at this point in the history
  • Loading branch information
5HT committed Oct 24, 2023
1 parent d399617 commit 521a035
Show file tree
Hide file tree
Showing 3 changed files with 24 additions and 14 deletions.
13 changes: 8 additions & 5 deletions lib/foundations/univalent/equiv.anders
Original file line number Diff line number Diff line change
@@ -1,13 +1,16 @@
{- Equivalence: https://anders.groupoid.space/foundations/univalent/equiv
— Fibers;
— Contractability of Fibers and Singletons;
— Equivalence.
— Equivalence;
— Surjective, Injective, Embedding, Hae;
— Univalence.
— Theorems, Gluing;
Copyright (c) Groupoid Infinity, 2014-2023.
— Univalence;
— Theorems, Gluing.

HoTT 4.6 Surjections and Embedding -}
HoTT 4.2.4 Fiber
HoTT 4.6 Surjections and Embedding
HoTT 5.8.5 Equivalence Induction

Copyright (c) Groupoid Infinity, 2014-2023. -}

module equiv where
import lib/foundations/univalent/path
Expand Down
10 changes: 5 additions & 5 deletions lib/foundations/univalent/extensionality.anders
Original file line number Diff line number Diff line change
@@ -1,10 +1,10 @@
{- FunExt Type: https://anders.groupoid.space/foundations/univalent/funext
- Homotopy
- Identity System
- Function Extensionality
- FunExt as Isomorphism
Homotopy;
Identity System;
Function Extensionality;
FunExt as Isomorphism.

HoTT 2.9 Pi-types and the function extensionality axiom.
HoTT 2.9 Pi-types and the function extensionality axiom

Copyright (c) Groupoid Infinity, 2014-2023. -}

Expand Down
15 changes: 11 additions & 4 deletions lib/foundations/univalent/prop.anders
Original file line number Diff line number Diff line change
Expand Up @@ -31,12 +31,19 @@ def propSet (A : U) (h : isProp A) : isSet A
def lemProp (A : U) (h : A -> isProp A) : isProp A := \(a : A), h a a

def T (A : U) (x : A) : U := Π (y : A), Path A x y
def lem1 (A : U) (t: isContr A) (x y : A) : Path A x y := comp-Path A x t.1 y (<i> t.2 x @ -i) (t.2 y)
def lem2 (A : U) (t: isContr A) (x : A) : isProp (T A x) := propPi A (\ (y : A), Path A x y) (propSet A (lem1 A t) x)

def propIsContr (A : U) : isProp (isContr A) := lemProp (isContr A) (\(t: isContr A), propSig A (T A) (lem1 A t) (lem2 A t))
def propIsProp (A : U) : isProp (isProp A) := \(f g : isProp A), <i> \(a b : A), propSet A f a b (f a b) (g a b) @ i
def lem1 (A : U) (t: isContr A) (x y : A) : Path A x y
:= comp-Path A x t.1 y (<i> t.2 x @ -i) (t.2 y)

def lem2 (A : U) (t: isContr A) (x : A)
: isProp (T A x)
:= propPi A (\ (y : A), Path A x y) (propSet A (lem1 A t) x)

def propIsContr (A : U) : isProp (isContr A)
:= lemProp (isContr A) (\(t: isContr A), propSig A (T A) (lem1 A t) (lem2 A t))

def propIsProp (A : U) : isProp (isProp A)
:= \(f g : isProp A), <i> \(a b : A), propSet A f a b (f a b) (g a b) @ i

def corSigProp (A: U) (B: A -> U) (pB : Π (x:A), isProp (B x)) (t u : Σ(x:A), B x) (p:PathP (<_>A) t.1 u.1)
: isProp (PathP (<i>B (p @ i)) t.2 u.2)
Expand Down

0 comments on commit 521a035

Please sign in to comment.