Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add performance tests #129

Open
wants to merge 17 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions .pytest.ini
Original file line number Diff line number Diff line change
@@ -1,2 +1,5 @@
[pytest]
addopts = -s -v --durations=10
filterwarnings =
error
ignore::DeprecationWarning
Comment on lines +3 to +5
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I wasn't familiar with these options, looks useful!

39 changes: 29 additions & 10 deletions pyscf_ipu/nanoDFT/nanoDFT.py
Original file line number Diff line number Diff line change
Expand Up @@ -138,7 +138,13 @@ def get_JK(density_matrix, ERI, dense_ERI, backend):

return diff_JK

def _nanoDFT(state, ERI, grid_AO, grid_weights, opts, mol):
def _nanoDFT(state, ERI, grid_AO, grid_weights, profile_performance, opts, mol):

if profile_performance is not None and opts.backend == "ipu":
print("[INFO] Running nanoDFT with performance profiling.")
grid_weights, start = utils.get_ipu_cycles(grid_weights)


# Utilize the IPUs MIMD parallism to compute the electron repulsion integrals (ERIs) in parallel.
#if opts.backend == "ipu": state.ERI = electron_repulsion_integrals(state.input_floats, state.input_ints, mol, opts.threads_int, opts.intv)
#else: pass # Compute on CPU.
Expand All @@ -156,6 +162,10 @@ def _nanoDFT(state, ERI, grid_AO, grid_weights, opts, mol):
# Perform DFT iterations.
log = jax.lax.fori_loop(0, opts.its, partial(nanoDFT_iteration, opts=opts, mol=mol), [state.density_matrix, V_xc, diff_JK, state.O, H_core, state.L_inv, # all (N, N) matrices
state.E_nuc, state.mask, ERI, grid_weights, grid_AO, state.diis_history, log])[-1]
if profile_performance is not None and opts.backend == "ipu":
log["energy"], end = utils.get_ipu_cycles(log["energy"])

return log["matrices"], H_core, log["energy"], (start.array, end.array)

return log["matrices"], H_core, log["energy"]

Expand Down Expand Up @@ -256,7 +266,7 @@ def init_dft_tensors_cpu(mol, opts, DIIS_iters=9):

return state, n_electrons_half, E_nuc, N, L_inv, grid_weights, grid_coords, grid_AO

def nanoDFT(mol, opts):
def nanoDFT(mol, opts, profile_performance=None):
# Init DFT tensors on CPU using PySCF.
state, n_electrons_half, E_nuc, N, L_inv, _grid_weights, grid_coords, grid_AO = init_dft_tensors_cpu(mol, opts)

Expand Down Expand Up @@ -314,17 +324,22 @@ def nanoDFT(mol, opts):

ERI = [nonzero_distinct_ERI, nonzero_indices]
eri_in_axes = [0,0]
#jitted_nanoDFT = jax.jit(partial(_nanoDFT, opts=opts, mol=mol), backend=opts.backend)
# jitted_nanoDFT = jax.jit(partial(_nanoDFT, opts=opts, mol=mol), backend=opts.backend)
jitted_nanoDFT = jax.pmap(partial(_nanoDFT, opts=opts, mol=mol), backend=opts.backend,
in_axes=(None, eri_in_axes, 0, 0),
in_axes=(None, eri_in_axes, 0, 0, None),
axis_name="p")
print(grid_AO.shape, grid_weights.shape)
vals = jitted_nanoDFT(state, ERI, grid_AO, grid_weights)
logged_matrices, H_core, logged_energies = [np.asarray(a[0]).astype(np.float64) for a in vals] # Ensure CPU

vals = jitted_nanoDFT(state, ERI, grid_AO, grid_weights, profile_performance)

if profile_performance is not None and opts.backend == "ipu":
logged_matrices, H_core, logged_energies, _ = [np.asarray(a[0]).astype(np.float64) for a in vals]
ipu_cycles_stamps = vals[3]
else:
logged_matrices, H_core, logged_energies = [np.asarray(a[0]).astype(np.float64) for a in vals] # Ensure CPU

# It's cheap to compute energy/hlgap on CPU in float64 from the logged values/matrices.
logged_E_xc = logged_energies[:, 3].copy()
print(logged_energies[:, 0] * HARTREE_TO_EV)
# print(logged_energies[:, 0] * HARTREE_TO_EV)
density_matrices, diff_JKs, H = [logged_matrices[:, i] for i in range(3)]
energies, hlgaps = np.zeros((opts.its, 5)), np.zeros(opts.its)
for i in range(opts.its):
Expand All @@ -333,6 +348,10 @@ def nanoDFT(mol, opts):
energies, logged_energies, hlgaps = [a * HARTREE_TO_EV for a in [energies, logged_energies, hlgaps]]
mo_energy, mo_coeff = np.linalg.eigh(L_inv @ H[-1] @ L_inv.T)
mo_coeff = L_inv.T @ mo_coeff

if profile_performance is not None and opts.backend == "ipu":
return energies, (logged_energies, hlgaps, mo_energy, mo_coeff, grid_coords, _grid_weights), ipu_cycles_stamps

return energies, (logged_energies, hlgaps, mo_energy, mo_coeff, grid_coords, _grid_weights)

def DIIS(i, H, density_matrix, O, diis_history, opts):
Expand Down Expand Up @@ -610,8 +629,8 @@ def nanoDFT_options(

from pyscf_ipu.experimental.device import has_ipu
import os
if has_ipu() and "JAX_IPU_USE_MODEL" in os.environ:
args.dense_ERI = True
# if has_ipu() and "JAX_IPU_USE_MODEL" in os.environ:
# args.dense_ERI = True
args = namedtuple('DFTOptionsImmutable',vars(args).keys())(**vars(args)) # make immutable
if not args.float32:
jax.config.update('jax_enable_x64', not float32)
Expand Down
15 changes: 15 additions & 0 deletions pyscf_ipu/nanoDFT/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -224,3 +224,18 @@ def prepare(val):
writer.append_data(imageio.v2.imread(f'{images_subdir}num_error{i}.jpg'))
writer.close()
print("Numerical error visualisation saved in", gif_path)


from tessellate_ipu import tile_map, ipu_cycle_count, tile_put_sharded
from typing import List

def get_ipu_cycles(data_to_be_sharded: List[float], num_items_to_be_sharded: int = 1) -> List[float]:
tmp = data_to_be_sharded[0:num_items_to_be_sharded]
tiles = tuple(range(len(tmp)))
tmp = tile_put_sharded(tmp, tiles)
tmp, cycles_count = ipu_cycle_count(tmp)
tmp = tmp.array
for idx in tiles:
data_to_be_sharded = data_to_be_sharded.at[idx].set(tmp[idx])

return data_to_be_sharded, cycles_count
77 changes: 77 additions & 0 deletions test/test_benchmark_performance.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
from subprocess import call, Popen
import os
import pytest
import numpy as np
import jax

from pyscf_ipu.nanoDFT.nanoDFT import nanoDFT_options, nanoDFT, build_mol

from tessellate_ipu import tile_map, tile_put_replicated, tile_put_sharded
from tessellate_ipu import ipu_cycle_count


# def test_basic_demonstration():
# dummy = np.random.rand(2,3).astype(np.float32)
# dummier = np.random.rand(2,3).astype(np.float32)

# @jax.jit
# def jitted_inner_test(dummy, dummier):
# tiles = tuple(range(len(dummy)))
# dummy = tile_put_sharded(dummy, tiles)
# tiles = tuple(range(len(dummier)))
# dummier = tile_put_sharded(dummier, tiles)

# dummy, dummier, start = ipu_cycle_count(dummy, dummier)
# out = tile_map(jax.lax.add_p, dummy, dummier)
# out, end = ipu_cycle_count(out)

# return out, start, end

# _, start, end = jitted_inner_test(dummy, dummier)
# print("Start cycle count:", start, start.shape)
# print("End cycle count:", end, end.shape)
# print("Diff cycle count:", end.array - start.array)

# assert True

@pytest.mark.parametrize("molecule", ["methane", "benzene"])
def test_dense_eri(molecule):

opts, mol_str = nanoDFT_options(float32 = True, mol_str=molecule, backend="ipu")
mol = build_mol(mol_str, opts.basis)

_, _, ipu_cycles_stamps = nanoDFT(mol, opts, profile_performance=True)

start, end = ipu_cycles_stamps
start = np.asarray(start)
end = np.asarray(end)

diff = (end - start)[0][0][0]
print("----------------------------------------------------------------------------")
print(" Diff cycle count:", diff)
print(" Diff cycle count [M]:", diff/1e6)
print("Estimated time of execution on Bow-IPU [seconds]:", diff/(1.85*1e9))
print("----------------------------------------------------------------------------")

assert True

@pytest.mark.parametrize("molecule", ["methane", "benzene", "c20"])
def test_sparse_eri(molecule):

opts, mol_str = nanoDFT_options(float32 = True, mol_str=molecule, backend="ipu", dense_ERI=False, eri_threshold=1e-9)
mol = build_mol(mol_str, opts.basis)

_, _, ipu_cycles_stamps = nanoDFT(mol, opts, profile_performance=True)

start, end = ipu_cycles_stamps
start = np.asarray(start)
end = np.asarray(end)

diff = (end - start)[0][0][0]
print("----------------------------------------------------------------------------")
print(" Diff cycle count:", diff)
print(" Diff cycle count [M]:", diff/1e6)
print("Estimated time of execution on Bow-IPU [seconds]:", diff/(1.85*1e9))
print("----------------------------------------------------------------------------")

assert True