Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Inject downstream accumulator. #11863

Merged
merged 8 commits into from
Feb 8, 2024
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
379 changes: 379 additions & 0 deletions pkg/logql/accumulator.go
Original file line number Diff line number Diff line change
@@ -0,0 +1,379 @@
package logql

import (
"container/heap"
"context"
"fmt"
"sort"
"time"

"github.com/grafana/loki/pkg/logproto"
"github.com/grafana/loki/pkg/logqlmodel"
"github.com/grafana/loki/pkg/logqlmodel/metadata"
"github.com/grafana/loki/pkg/logqlmodel/stats"
"github.com/grafana/loki/pkg/querier/queryrange/queryrangebase/definitions"
"github.com/grafana/loki/pkg/util/math"
)

// NewBufferedAccumulator returns an accumulator which aggregates all query
// results in a slice. This is useful for metric queries, which are generally
// small payloads and the memory overhead for buffering is negligible.
func NewBufferedAccumulator(n int) *BufferedAccumulator {
return &BufferedAccumulator{
results: make([]logqlmodel.Result, n),
}
}

type BufferedAccumulator struct {
results []logqlmodel.Result
}

func (a *BufferedAccumulator) Accumulate(_ context.Context, acc logqlmodel.Result, i int) error {
a.results[i] = acc
return nil
}

func (a *BufferedAccumulator) Result() []logqlmodel.Result {
return a.results
}

type quantileSketchAccumulator struct {
jeschkies marked this conversation as resolved.
Show resolved Hide resolved
matrix ProbabilisticQuantileMatrix
}

// newQuantileSketchAccumulator returns an accumulator for sharded
// probabilistic quantile queries that merges results as they come in.
func newQuantileSketchAccumulator() *quantileSketchAccumulator {
return &quantileSketchAccumulator{}
}

func (a *quantileSketchAccumulator) Accumulate(_ context.Context, res logqlmodel.Result, _ int) error {
if res.Data.Type() != QuantileSketchMatrixType {
return fmt.Errorf("unexpected matrix data type: got (%s), want (%s)", res.Data.Type(), QuantileSketchMatrixType)
}
data, ok := res.Data.(ProbabilisticQuantileMatrix)
if !ok {
return fmt.Errorf("unexpected matrix type: got (%T), want (ProbabilisticQuantileMatrix)", res.Data)
}
if a.matrix == nil {
a.matrix = data
return nil
}

var err error
a.matrix, err = a.matrix.Merge(data)
return err
}

func (a *quantileSketchAccumulator) Result() []logqlmodel.Result {
return []logqlmodel.Result{{Data: a.matrix}}
}

// heap impl for keeping only the top n results across m streams
// importantly, AccumulatedStreams is _bounded_, so it will only
// store the top `limit` results across all streams.
// To implement this, we use a min-heap when looking
// for the max values (logproto.FORWARD)
// and vice versa for logproto.BACKWARD.
// This allows us to easily find the 'worst' value
// and replace it with a better one.
// Once we've fully processed all log lines,
// we return the heap in opposite order and then reverse it
// to get the correct order.
// Heap implements container/heap.Interface
// solely to use heap.Interface as a library.
// It is not intended for the heap pkg functions
// to otherwise call this type.
type AccumulatedStreams struct {
count, limit int
labelmap map[string]int
streams []*logproto.Stream
order logproto.Direction

stats stats.Result // for accumulating statistics from downstream requests
headers map[string][]string // for accumulating headers from downstream requests
}

// NewStreamAccumulator returns an accumulator for limited log queries.
// Log queries, sharded thousands of times and each returning <limit>
// results, can be _considerably_ larger. In this case, we eagerly
// accumulate the results into a logsAccumulator, discarding values
// over the limit to keep memory pressure down while other subqueries
// are executing.
func NewStreamAccumulator(params Params) *AccumulatedStreams {
// the stream accumulator stores a heap with reversed order
// from the results we expect, so we need to reverse the direction
order := logproto.FORWARD
if params.Direction() == logproto.FORWARD {
order = logproto.BACKWARD
}

return &AccumulatedStreams{
labelmap: make(map[string]int),
order: order,
limit: int(params.Limit()),

headers: make(map[string][]string),
}
}

// returns the top priority
func (acc *AccumulatedStreams) top() (time.Time, bool) {
if len(acc.streams) > 0 && len(acc.streams[0].Entries) > 0 {
return acc.streams[0].Entries[len(acc.streams[0].Entries)-1].Timestamp, true
}
return time.Time{}, false
}

func (acc *AccumulatedStreams) Find(labels string) (int, bool) {
i, ok := acc.labelmap[labels]
return i, ok
}

// number of streams
func (acc *AccumulatedStreams) Len() int { return len(acc.streams) }

func (acc *AccumulatedStreams) Swap(i, j int) {
// for i=0, j=1

// {'a': 0, 'b': 1}
// [a, b]
acc.streams[i], acc.streams[j] = acc.streams[j], acc.streams[i]
// {'a': 0, 'b': 1}
// [b, a]
acc.labelmap[acc.streams[i].Labels] = i
acc.labelmap[acc.streams[j].Labels] = j
// {'a': 1, 'b': 0}
// [b, a]
}

// first order by timestamp, then by labels
func (acc *AccumulatedStreams) Less(i, j int) bool {
// order by the 'oldest' entry in the stream
if a, b := acc.streams[i].Entries[len(acc.streams[i].Entries)-1].Timestamp, acc.streams[j].Entries[len(acc.streams[j].Entries)-1].Timestamp; !a.Equal(b) {
return acc.less(a, b)
}
return acc.streams[i].Labels <= acc.streams[j].Labels
}

func (acc *AccumulatedStreams) less(a, b time.Time) bool {
// use after for stable sort
if acc.order == logproto.FORWARD {
return !a.After(b)
}
return !b.After(a)
}

func (acc *AccumulatedStreams) Push(x any) {
s := x.(*logproto.Stream)
if len(s.Entries) == 0 {
return
}

if room := acc.limit - acc.count; room >= len(s.Entries) {
if i, ok := acc.Find(s.Labels); ok {
// stream already exists, append entries

// these are already guaranteed to be sorted
// Reasoning: we shard subrequests so each stream exists on only one
// shard. Therefore, the only time a stream should already exist
// is in successive splits, which are already guaranteed to be ordered
// and we can just append.
acc.appendTo(acc.streams[i], s)

return
}

// new stream
acc.addStream(s)
return
}

// there's not enough room for all the entries,
// so we need to
acc.push(s)
}

// there's not enough room for all the entries.
// since we store them in a reverse heap relative to what we _want_
// (i.e. the max value for FORWARD, the min value for BACKWARD),
// we test if the new entry is better than the worst entry,
// swapping them if so.
func (acc *AccumulatedStreams) push(s *logproto.Stream) {
worst, ok := acc.top()
room := math.Min(acc.limit-acc.count, len(s.Entries))

if !ok {
if room == 0 {
// special case: limit must be zero since there's no room and no worst entry
return
}
s.Entries = s.Entries[:room]
// special case: there are no entries in the heap. Push entries up to the limit
acc.addStream(s)
return
}

// since entries are sorted by timestamp from best -> worst,
// we can discard the entire stream if the incoming best entry
// is worse than the worst entry in the heap.
cutoff := sort.Search(len(s.Entries), func(i int) bool {
// TODO(refactor label comparison -- should be in another fn)
if worst.Equal(s.Entries[i].Timestamp) {
return acc.streams[0].Labels < s.Labels
}
return acc.less(s.Entries[i].Timestamp, worst)
})
s.Entries = s.Entries[:cutoff]

for i := 0; i < len(s.Entries) && acc.less(worst, s.Entries[i].Timestamp); i++ {

// push one entry at a time
room = acc.limit - acc.count
// pop if there's no room to make the heap small enough for an append;
// in the short path of Push() we know that there's room for at least one entry
if room == 0 {
acc.Pop()
}

cpy := *s
cpy.Entries = []logproto.Entry{s.Entries[i]}
acc.Push(&cpy)

// update worst
worst, _ = acc.top()
}
}

func (acc *AccumulatedStreams) addStream(s *logproto.Stream) {
// ensure entries conform to order we expect
// TODO(owen-d): remove? should be unnecessary since we insert in appropriate order
// but it's nice to have the safeguard
sort.Slice(s.Entries, func(i, j int) bool {
return acc.less(s.Entries[j].Timestamp, s.Entries[i].Timestamp)
})

acc.streams = append(acc.streams, s)
i := len(acc.streams) - 1
acc.labelmap[s.Labels] = i
acc.count += len(s.Entries)
heap.Fix(acc, i)
}

// dst must already exist in acc
func (acc *AccumulatedStreams) appendTo(dst, src *logproto.Stream) {
// these are already guaranteed to be sorted
// Reasoning: we shard subrequests so each stream exists on only one
// shard. Therefore, the only time a stream should already exist
// is in successive splits, which are already guaranteed to be ordered
// and we can just append.

var needsSort bool
for _, e := range src.Entries {
// sort if order has broken
if len(dst.Entries) > 0 && acc.less(dst.Entries[len(dst.Entries)-1].Timestamp, e.Timestamp) {
needsSort = true
}
dst.Entries = append(dst.Entries, e)
}

if needsSort {
sort.Slice(dst.Entries, func(i, j int) bool {
// store in reverse order so we can more reliably insert without sorting and pop from end
return acc.less(dst.Entries[j].Timestamp, dst.Entries[i].Timestamp)
})
}

acc.count += len(src.Entries)
heap.Fix(acc, acc.labelmap[dst.Labels])

}

// Pop returns a stream with one entry. It pops the first entry of the first stream
func (acc *AccumulatedStreams) Pop() any {
n := acc.Len()
if n == 0 {
return nil
}

stream := acc.streams[0]
cpy := *stream
cpy.Entries = []logproto.Entry{cpy.Entries[len(stream.Entries)-1]}
stream.Entries = stream.Entries[:len(stream.Entries)-1]

acc.count--

if len(stream.Entries) == 0 {
// remove stream
acc.Swap(0, n-1)
acc.streams[n-1] = nil // avoid leaking reference
delete(acc.labelmap, stream.Labels)
acc.streams = acc.streams[:n-1]

}

if acc.Len() > 0 {
heap.Fix(acc, 0)
}

return &cpy
}

// Note: can only be called once as it will alter stream ordreing.
func (acc *AccumulatedStreams) Result() []logqlmodel.Result {
// sort streams by label
sort.Slice(acc.streams, func(i, j int) bool {
return acc.streams[i].Labels < acc.streams[j].Labels
})

streams := make(logqlmodel.Streams, 0, len(acc.streams))

for _, s := range acc.streams {
// sort entries by timestamp, inversely based on direction
sort.Slice(s.Entries, func(i, j int) bool {
return acc.less(s.Entries[j].Timestamp, s.Entries[i].Timestamp)
})
streams = append(streams, *s)
}

res := logqlmodel.Result{
// stats & headers are already aggregated in the context
Data: streams,
Statistics: acc.stats,
Headers: make([]*definitions.PrometheusResponseHeader, 0, len(acc.headers)),
}

for name, vals := range acc.headers {
res.Headers = append(
res.Headers,
&definitions.PrometheusResponseHeader{
Name: name,
Values: vals,
},
)
}

return []logqlmodel.Result{res}
}

func (acc *AccumulatedStreams) Accumulate(_ context.Context, x logqlmodel.Result, _ int) error {
// TODO(owen-d/ewelch): Shard counts should be set by the querier
// so we don't have to do it in tricky ways in multiple places.
// See pkg/logql/downstream.go:DownstreamEvaluator.Downstream
// for another example.
if x.Statistics.Summary.Shards == 0 {
x.Statistics.Summary.Shards = 1
}
acc.stats.Merge(x.Statistics)
metadata.ExtendHeaders(acc.headers, x.Headers)

switch got := x.Data.(type) {
case logqlmodel.Streams:
for i := range got {
acc.Push(&got[i])
}
default:
return fmt.Errorf("unexpected response type during response result accumulation. Got (%T), wanted %s", got, logqlmodel.ValueTypeStreams)
}
return nil
}
Loading
Loading