Skip to content

Commit

Permalink
chore: [vertexai] update README
Browse files Browse the repository at this point in the history
  • Loading branch information
jaycee-li committed Mar 22, 2024
1 parent 1be133f commit de0d52f
Showing 1 changed file with 184 additions and 5 deletions.
189 changes: 184 additions & 5 deletions java-vertexai/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -144,6 +144,40 @@ public class Main {
}
```

#### Text Generation with Async
To get a future response, you can use the `generateContentAsync` method

```java
package <your package name>

import com.google.api.core.ApiFuture;
import com.google.cloud.vertexai.VertexAI;
import com.google.cloud.vertexai.api.GenerateContentResponse;
import com.google.cloud.vertexai.generativeai.GenerativeModel;
import java.io.IOException;

public class Main {
private static final String PROJECT_ID = <your project id>;
private static final String LOCATION = <location>;

public static void main(String[] args) throws IOException {
try (VertexAI vertexAi = new VertexAI(PROJECT_ID, LOCATION);) {

GenerativeModel model = new GenerativeModel("gemini-pro", vertexAi);

ApiFuture<GenerateContentResponse> future = model.generateContentAsync("How are you?");

// Do something else.

// Get the response from Future
GenerateContentResponse response = future.get();

// Do something with the response.
}
}
}
```

#### Text Generation from Multi-modal Input
To generate text based on data of multiple modalities, one needs to make a `Content`, which is made easier by `ContentMaker`:

Expand Down Expand Up @@ -271,6 +305,151 @@ public class Main {
}
```
#### Generation with customized configurations
The Vertex AI SDK for Java provides configurations for customizing content
generation. You can configure options like
[GenerationConfig][generationconfig-ref] and [SafetySetting][safetysetting-ref],
or add [Tool][tool-ref] for function calling.
You can choose between two configuration approaches: set configs during model
instantiation for consistency across all text generations, or adjust them on a
per-request basis for fine-grained control.
##### Model level configurations
```java
package <PACKAGE_NAME>
import com.google.cloud.vertexai.VertexAI;
import com.google.cloud.vertexai.api.GenerateContentResponse;
import com.google.cloud.vertexai.api.GenerationConfig;
import com.google.cloud.vertexai.generativeai.GenerativeModel;
import com.google.cloud.vertexai.generativeai.ResponseHandler;
import java.io.IOException;
public class Main {
private static final String PROJECT_ID = <PROJECT_ID>;
private static final String LOCATION = <LOCATION>;
public static void main(String[] args) throws IOException {
try (VertexAI vertexAi = new VertexAI(PROJECT_ID, LOCATION);) {
// Build a GenerationConfig instance.
GenerationConfig generationConfig =
GenerationConfig.newBuilder().setMaxOutputTokens(50).build();
// Use the builder to instantialize the model with the configuration.
GenerativeModel model =
new GenerativeModel.Builder()
.setModelName("gemino-pro")
.setVertexAi(vertexAi)
.setGenerationConfig(generationConfig)
.build();
// Generate the response.
GenerateContentResponse response = model.generateContent("Please explain LLM?");
// Do something with the response.
}
}
}
```
##### Request level configurations
Our SDK provides fluent APIs to control request level configurations.
```java
package <PACKAGE_NAME>
import com.google.cloud.vertexai.VertexAI;
import com.google.cloud.vertexai.api.GenerateContentResponse;
import com.google.cloud.vertexai.api.HarmCategory;
import com.google.cloud.vertexai.api.SafetySetting;
import com.google.cloud.vertexai.api.SafetySetting.HarmBlockThreshold;
import com.google.cloud.vertexai.generativeai.GenerateContentConfig;
import com.google.cloud.vertexai.generativeai.GenerativeModel;
import java.io.IOException;
import java.util.Arrays;
public class Main {
private static final String PROJECT_ID = <PROJECT_ID>;
private static final String LOCATION = <LOCATION>;
public static void main(String[] args) throws IOException {
try (VertexAI vertexAi = new VertexAI(PROJECT_ID, LOCATION); ) {
// Build a SafetySetting instance.
SafetySetting safetySetting =
SafetySetting.newBuilder()
.setCategory(HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT)
.setThreshold(HarmBlockThreshold.BLOCK_LOW_AND_ABOVE)
.build();
// Generate the response with the fluent API `withSafetySetting`.
GenerateContentResponse response =
model
.withSafetySetting(Arrays.asList(SafetySetting))
.generateContent("Please explain LLM?");
// Do something with the response.
}
}
}
```
#### Configurations for ChatSession
When a chat session is started (`ChatSesson chat = model.startChat()`),
it inherits all configurations from the model. You can also use fluent APIs
to update these settings during the chat.
```java
package <PACKAGE_NAME>
import com.google.cloud.vertexai.VertexAI;
import com.google.cloud.vertexai.api.GenerateContentResponse;
import com.google.cloud.vertexai.api.GenerationConfig;
import com.google.cloud.vertexai.generativeai.ChatSession;
import com.google.cloud.vertexai.generativeai.GenerativeModel;
import com.google.cloud.vertexai.generativeai.ResponseHandler;
import java.io.IOException;
public class Main {
private static final String PROJECT_ID = <PROJECT_ID>;
private static final String LOCATION = <LOCATION>;
public static void main(String[] args) throws IOException {
try (VertexAI vertexAi = new VertexAI(PROJECT_ID, LOCATION);) {
// Instantiate a model with GenerationConfig
GenerationConfig generationConfig =
GenerationConfig.newBuilder().setMaxOutputTokens(50).build();
GenerativeModel model =
new GenerativeModel.Builder()
.setModelName("gemino-pro")
.setVertexAi(vertexAi)
.setGenerationConfig(generationConfig)
.build();
// Start a chat session
ChatSession chat = model.startChat();
// Send a message. The model level GenerationConfig will be applied here
GenerateContentResponse response = chat.sendMessage("Please explain LLM?");
// Do something with the response
// Send another message, using Fluent API to update the GenerationConfig
response =
chat.withGenerationConfig(GenerationConfig.getDefaultInstance())
.sendMessage("Tell me more about what you can do.");
// Do something with the response
}
}
}
```
#### Using ChatSession for Function-calling
In a chat, we can also do function calling.
Expand Down Expand Up @@ -350,7 +529,7 @@ public class Main {
// Start a chat session from a model, with the use of the declared
// function.
GenerativeModel model =
GenerativeModel.newBuilder()
new GenerativeModel.Builder()
.setModelName(MODEL_NAME)
.setVertexAi(vertexAi)
.setTools(Arrays.asList(tool))
Expand Down Expand Up @@ -457,9 +636,6 @@ public class Main {
}
```

#### Model/Chat-level configurations

TODO(jayceeli)

## Supported Java Versions

Expand Down Expand Up @@ -576,4 +752,7 @@ Java is a registered trademark of Oracle and/or its affiliates.
[apilibs]: https://cloud.google.com/apis/docs/client-libraries-explained#google_api_client_libraries
[oracle]: https://www.oracle.com/java/technologies/java-se-support-roadmap.html
[g-c-j]: http://github.com/googleapis/google-cloud-java
[generative-ai-studio]: https://cloud.google.com/generative-ai-studio?hl=en
[generative-ai-studio]: https://cloud.google.com/generative-ai-studio?hl=en
[generationconfig-ref]: https://cloud.google.com/java/docs/reference/google-cloud-vertexai/latest/com.google.cloud.vertexai.api.GenerationConfig.Builder
[safetysetting-ref]: https://cloud.google.com/java/docs/reference/google-cloud-vertexai/latest/com.google.cloud.vertexai.api.SafetySetting.Builder
[tool-ref]: https://cloud.google.com/java/docs/reference/google-cloud-vertexai/latest/com.google.cloud.vertexai.api.Tool.Builder

0 comments on commit de0d52f

Please sign in to comment.