Skip to content

google-deepmind/multimodal_transformers

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Multimodal Transformers

This code runs inference with the multimodal transformer models described in "Decoupling the Role of Data, Attention, and Losses in Multimodal Transformers". Our models can be used to score if an image-text pair match. Please see our paper for more details. This code release consists of a colab to extract image and language features and input them into our transformer models. Transformer models are stored on tfhub.

Please see the tables below for details of models which we have released via tfhub.

Name Training Dataset ITM MRM MLM Heads Layers Att. Type FineTuned Notes
data_cc (base) Conceptual Captions Classification Y Y 12 6 Merged N
data_sbu SBU Classification Y Y 12 6 Merged N
data_vg Visual Genome Classification Y Y 12 6 Merged N
data_mscoco MSCOCO Classification Y Y 12 6 Merged N
data_mscoco-narratives MSCOCO Narratives Classification Y Y 12 6 Merged N
data_oi-narratives OI Narratives Classification Y Y 12 6 Merged N
data_combined-instance All (instance sampling) Classification Y Y 12 6 Merged N
data_combined-dataset All (dataset sampling) Classification Y Y 12 6 Merged N
data_uniter-instance Uniter datasets (instance sampling) Classification Y Y 12 6 Merged N
data_uniter-dataset Uniter datasets (dataset sampling) Classification Y Y 12 6 Merged N
data_cc-with-bert Conceptual Captions Classification Y Y 12 6 Merged N Language initialised with BERT
loss_itm_mrm Conceptual Captions Classification Y N 12 6 Merged N
loss_itm_mlm Conceptual Captions Classification N Y 12 6 Merged N
loss_single-modality-contrastive32 Conceptual Captions Contrastive Y Y 12 6 Sing. Modality N
loss_single-modality-contrastive1024 Conceptual Captions Contrastive Y Y 12 6 Sing. Modality N
loss_v1-contrastive32 Conceptual Captions Contrastive Y Y 12 1 Merged N
architecture_heads1-768 Conceptual Captions Classification Y Y 1 6 Merged N
architecture_heads3-256 Conceptual Captions Classification Y Y 3 6 Merged N
architecture_heads6-64 Conceptual Captions Classification Y Y 6 6 Merged N
architecture_heads18-64 Conceptual Captions Classification Y Y 18 6 Merged N
architecture_vilbert-1block Conceptual Captions Classification Y Y 12 1 Merged N
architecture_vilbert-2block Conceptual Captions Classification Y Y 12 2 Merged N
architecture_vilbert-4block Conceptual Captions Classification Y Y 12 4 Merged N
architecture_vilbert-12block Conceptual Captions Classification Y Y 12 12 Merged N
architecture_single-modality Conceptual Captions Classification Y Y 12 6 Sing. Modality N
architecture_mixed-modality Conceptual Captions Classification Y Y 12 6 Mix Modality N 5 single modality layers and 1 merged layer
architecture_single-stream Conceptual Captions Classification Y Y 12 6 Single Stream N
architecture_language-q-12 Conceptual Captions Classification Y Y 12 6 Asymmetric (language) N
architecture_image-q-12 Conceptual Captions Classification Y Y 12 6 Asymmetric (image) N
architecture_language-q-24 Conceptual Captions Classification Y Y 24 6 Asymmetric (language) N
architecture_image-q-24 Conceptual Captions Classification Y Y 24 6 Asymmetric (image) N
architecture_single-modality-hloss Conceptual Captions Classification Y Y 12 6 Single modality N Includes ITM loss after every layer
data-ft_sbu SBU Classification Y Y 12 6 Merged Y
data-ft_vg Visual Genome Classification Y Y 12 6 Merged Y
data-ft_mscoco MSCOCO Classification Y Y 12 6 Merged Y
data-ft_mscoco-narratives MSCOCO Narratives Classification Y Y 12 6 Merged Y
data-ft_oi-narratives OI Narratives Classification Y Y 12 6 Merged Y
data-ft_cc Conceptual Captions Classification Y Y 12 6 Merged Y
data-ft_combined-instance All (instance sampling) Classification Y Y 12 6 Merged Y
data-ft_combined-dataset All (dataset sampling) Classification Y Y 12 6 Merged Y
data-ft_uniter-instance Uniter datasets (instance sampling) Classification Y Y 12 6 Merged Y
data-ft_uniter-dataset Uniter datasets (dataset sampling) Classification Y Y 12 6 Merged Y
architecture-ft_single-modality Conceptual Captions Classification Y Y 12 6 Sing. Modality Y
architecture-ft_single-stream Conceptual Captions Classification Y Y 12 6 Single Stream Y
architecture-ft_language-q-12 Conceptual Captions Classification Y Y 12 6 Asymmetric (language) Y
architecture-ft_image-q-12 Conceptual Captions Classification Y Y 12 6 Asymmetric (image) Y
architecture-ft_language-q-24 Conceptual Captions Classification Y Y 24 6 Asymmetric (language) Y
architecture-ft_image-q-24 Conceptual Captions Classification Y Y 24 6 Asymmetric (image) Y

In addition to our transformer models, we also release our baseline models. See details of our baseline models in the chart below:

Name ITM Bert Initialisation FineTuned
baseline_baseline Contrastive Yes N
baseline_baseline-cls Classification No N
baseline_baseline-no-bert-transfer Contrastive No N
baseline-ft_baseline Contrastive Yes Y
baseline-ft_baseline-cls Classification No Y
baseline-ft_baseline-no-bert-transfer Contrastive No

Installation

You do not need to install anything! You should be able to run all code from our released colab.

Usage

You can run an image and text pair through our module and see if the image and text pair match.

import tensorflow.compat.v1 as tf import tensorflow_hub as hub
m =
hub.Module('https://tfhub.dev/deepmind/mmt/architecture-ft_image-q-12/1')

Inference:

output = model.signatures['default'](**inputs)
score = tf.nn.softmax(output['output']).numpy()[0]

where score indicates if an image-text pair match (1 indicates a perfect match). Inputs is a dictionary with the following keys:

  • image/bboxes: Coordinates of detected image bounding boxes.

  • image/detection_features: Features from image detector.

  • image/padding_mask: Indicator if image features are padded.

  • masked_tokens: Text tokens

  • text/segment_ids: Indicates sentence segment. (Since we train with one sentencce this will always be 0.)

  • text/token_ids: Indicates which words tokens belong to. (We use a tokenizer which can break one word into multiple tokens).

  • text/padding_mask: Indicator if text features are padded.

Please see our colab linked for details on pre-processing. You will need to use the detector released in our colab for good results.

Citing this work

If you use this model in your research please cite:

[1] Lisa Anne Hendricks, John Mellor, Rosalia Schneider, Jean-Baptiste Alayrac, and Aida Nematzadeh. Decoupling the Role of Data, Attention, and Losses in Multimodal Transformers, TACL 2021.

Disclaimer

This is not an official Google product.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published