Skip to content

gogobd/SampleRNN

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

35 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SampleRNN

A Tensorflow implementation of SampleRNN: An Unconditional End-to-End Neural Audio Generation Model.

Requirements

  • Tensroflow 1.0
  • Python 2.7
  • Librosa  

Dataset  

We used the pinao music of 74 minutes as the training corpus, and you can use any corpus containing ".wav" files to instead as well.
For Mandarin samples, we used human voice of 6 hours as the training corpus .

Samples

Pretrained model

FEATURES

  • 2-tier SampleRNN
  • 3-tier SampleRNN
  • Quantization in linear.
  • Quantization in mu-law.

Training

python train.py \
	--data_dir=./pinao-corpus \
	--silence_threshold=0.1 \
	--sample_size=102408 \
	--big_frame_size=8 \
	--frame_size=2 \
	--q_levels=256 \
	--rnn_type=GRU \
	--dim=1024 \
	--n_rnn=1 \
	--seq_len=520 \
	--emb_size=256 \
	--batch_size=64 \
	--optimizer=adam \
	--num_gpus=4

or

sh run.sh

Related projects

This work is based on the flowing implementations with some modifications:

About

Tensorflow implementation of SampleRNN

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 98.6%
  • Other 1.4%