Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Equations solved in Rayleigh #533

Merged
merged 2 commits into from
Jun 20, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
115 changes: 115 additions & 0 deletions doc/source/User_Guide/physics_math_overview.rst
Original file line number Diff line number Diff line change
Expand Up @@ -504,6 +504,65 @@ and

\left[ \left\{\boldsymbol{\nabla}\times\left(\mathrm{f_1}\,\boldsymbol{v}\right)\right\}_r \right]_\ell^m = \frac{\ell(\ell+1)}{r^2}Z_\ell^m.


The equations that are solved are then equations for the radial component of the momentum equation (21):

.. math::
:label: Radial Component of the Momentum Equation

\tiny\begin{aligned}
\frac{\partial}{\partial t}\left(\overline{\rho}v_{r}\right)_{l}^{m}=\frac{\ell\left(\ell+1\right)}{r^2}\frac{\partial W_{l}^{m}}{\partial t}=-\rho\frac{\partial{P_{l}^{m}}}{\partial r}-\overline{g}\left(\frac{\partial\overline{\rho}}{\partial \Theta}\right)_{p,\xi}
\\
+\frac{2\Omega}{r}\left[im\frac{\partial W_{l}^{m}}{\partial r}+\left(\ell+2\right)d_{l}^{m}Z_{l+1}^{m}-\left(\ell-1\right)d_{l}^{m}Z_{\ell-1}^{m}\right]
\\
+\frac{\overline{\nu}\ell\left(\ell+
1\right)}{r^2}\left[\frac{{\partial^2 W_{l}^{m}}}{{\partial r^2}}+\left(2 h_{\nu}-\frac{h_{\rho}}{3}\right) \frac{{\partial W_{l}^{m}}}{{\partial r}}\right.
\\
\left.-\left(\frac{4}{3}\left(\left(\frac{h_{\rho}}{r}+\frac{dh_{\rho}}{dr}\right)+h_{\nu}\left(\frac{3}{r}+h_{\rho}\right)\right)+\frac{\ell\left(\ell+1\right)}{r^2}\right)W_{l}^{m}\right]
\\
+\frac{FLMW1_l^m}{r^2}
\end{aligned}




the radial component of the curl of the momentum equation (22)

.. math::
:label: Radial Component of the Curl of the Momentum Equation

\tiny\begin{aligned}
\frac{\partial \left(\nabla\times \overline{\rho}\bf{v}\right)_{r,l}^{m}}{\partial t}=\frac{\ell\left(\ell+1\right)}{r^2}\frac{\partial Z_{l}^{m}}{\partial t}=\frac{2\Omega}{r^2}\left[im Z_{l}^{m} + \right .
\\
\left . \ell\left(\ell+1\right)d_{l+1}^{m}\left(\frac{\partial W_{l+1}^{m}}{\partial r}+
\frac{\left(l+1\right)}{r^2}W_{l+1}^{m}\right)+\left(\ell+1\right)\left(\ell-1\right)d_{l}^m \left(\frac{\partial W_{l-1}^m}{\partial r}-\frac{\ell}{r}W_{l-1}^m\right)\right]
\\
+\frac{\nu\ell\left(\ell+1\right)}{r^2}\left[\frac{\partial^2 Z_{l}^m}{\partial r^2}+\left(h_{\nu}-h_{\rho}\right)\frac{\partial Z_{l}^m}{\partial r}
-\left(\frac{2h_{\rho}}{r}+\frac{dh_{\rho}}{dr}+h_{\nu}\left(\frac{2}{r}+h_{\rho}\right)+\frac{\ell\left(\ell+1\right)}{r^2}\right)Z_{l}^m\right]
\\
\left(\ell+1\right)C_{l}^m FLMW3_{l-1}^m-\ell C_{l+1}^m FLMW3_{l+1}^m-im FLMW2_{l}^m
\end{aligned}

and the Horizontal Divergence of the Momentum Equation (23)

.. math::
:label: Horizontal Divergence of the Momentum Equation

\tiny\begin{aligned}
\frac{\partial \left(\nabla\cdot\overline{\rho} \bf{v}\right)_{l}^m}{\partial t}=-\frac{\ell\left(\ell+1\right)}{r^2}\frac{\partial}{\partial t}\left(\frac{\partial W_l^m}{\partial r}\right)=\frac{\ell\left(\ell+1\right)}{r^2}\overline{\rho}P_l^m+
\\
\frac{2\Omega}{r^2}\left[\ell\left(\ell+2\right)d_{l+1}^mZ_{l+1}^m +\left(\ell+1\right)\left(\ell-1\right)d_l^m Z_{l-1}^m-im\left(\frac{\partial W_l^m}{\partial r}+\frac{\ell\left(\ell+1\right)}{r}W_l^m\right)\right]
\\
+\frac{\nu\ell\left(\ell+1\right)}{r^2}\left[-\frac{\partial^3{W_l^m}}{\partial r^3} -\left(h_{\nu}-h_{\rho}\right)\frac{\partial^2 W_l^m}{r^2}\right.
\\
\left. +\left(\frac{2h_\rho}{r}+\frac{\partial h_{\rho}}{\partial r}+h_{\nu}\left(\frac{2}{r}+h_{\rho}\right)+\frac{\ell\left(\ell+1\right)}{r^2}\right)\frac{\partial W_l^m}{\partial r}\right .
\\
\left . -\frac{\ell\left(\ell+1\right)}{r^2}\left(h_{\nu}+\frac{2}{3}h_{\rho}+\frac{2}{r}\right)W_l^m\right]
\\
+\left[\left(\ell+1\right)C_l^mFLMW2_{l-1}^m-\ell C_{l+1}^m FLMW2_{l+1}^m+im FLMW3_l^m\right]
\end{aligned}


A similar decomposition is performed on the magnetic field to ensure it remains divergence free. In that case, the magnetic field is projected onto flux functions such that

.. math::
Expand Down Expand Up @@ -543,6 +602,62 @@ and

.. _pseudospectral:

The equations for C and A, which are solved by Rayleigh are then the Radial Component of the Magnetic Induction Equation (30):

.. math::
:label: Radial Component of the Magnetic Induction Equation

\tiny\begin{aligned}
\frac{\partial B_{r,l}^m}{\partial t}=\frac{\ell\left(\ell+1\right)}{r^2}\frac{\partial C_l^m}{\partial t} =\overline{\eta}\frac{\ell\left(\ell+1\right)}{r^2}\left(\frac{\partial^2 C_l^m}{\partial r^2}-\frac{\ell\left(\ell+1\right)}{r^2}C_l^m\right)
\\
+\left[\left(\ell+1\right)d_{l}^mFLMB3_{l-1}^m-\ell d_{l+1}^mFLMB3_{l+1}^m-imFLMB2_l^m\right]
\end{aligned}

and the radial component of the curl of the magnetic induction equation ():

.. math::
:label: Radial Component of the Curl of the Magnetic Induction Equation

\tiny\begin{aligned}
\frac{\partial\left(\nabla\times B\right)_{r,l}^m}{\partial t}=\frac{\ell\left(\ell+1\right)}{r^2}\frac{\partial A_l^m}{\partial t}=\overline{\eta}\frac{\ell\left(\ell+1\right)}{r^2}\left(\frac{\partial^2 A_l^m}{\partial r^2}+h_{\eta}\frac{\partial A_l^m}{\partial r}-\frac{\ell\left(\ell+1\right)}{r^2} A_l^m \right)+
\\
\frac{1}{r^2}\left[\frac{\ell\left(\ell+1\right)}{r^2}FLMB1_l^m+\frac{\partial}{\partial r}\left(r^2\left(\left(\ell+1\right)d_l^mFLMB2_{l-1}^m-\ell d_{l+1}^mFLMB2_{l+1}^m+imFLMB3_l^m\right)\right)\right]
\end{aligned}


Where the "FLM*" terms refer to nonlinear terms, defined as:

.. math::
:label: FLMW1

\scriptsize FLMW1=r^2\left[-\left(\nabla\cdot\overline{\rho}\bf{v}\bf{v}\right)_r+\frac{1}{\mu}\left(\left(\nabla\times\bf{B}\right)\times\bf{B}\right)_r +\Omega^2\rho r\sin^2\theta\right]_l^m

.. math::
:label: FLMW2

\scriptsize FLMW2=\left[\frac{-\nabla\cdot\left(\overline{\rho}\bf{v}\bf{v}\right)_{\phi}}{r\sin\theta}+\frac{1}{\mu}\frac{\left(\left(\nabla\times\bf{B}\right)\times\bf{B}\right)_{\theta}}{r\sin\theta}+\Omega^2\rho\cos\theta\right]_l^m

.. math::
:label: FLMW3

\scriptsize FLMW3=\left[\frac{-\left(\nabla\cdot\overline{\rho}\bf{v}\bf{v}\right)_{\phi}}{r\sin\theta}+\frac{1}{\mu}\frac{\left(\left(\nabla\times\bf{B}\right)\times\bf{B}\right)_{\phi}}{r\sin\theta}\right]_l^m

.. math::
:label: FLMB1

\scriptsize FLMB1=\left[r^2\left(\bf{v}\times\bf{B}\right)_r\right]_l^m

.. math::
:label: FLMB2

\scriptsize FLMB2=\left[\frac{\left(\bf{v}\times\bf{B}\right)_{\theta}}{r\sin\theta}\right]_l^m

.. math::
:label: FLMB3

\scriptsize FLMB3=\left[\frac{\left(\bf{v}\times\bf{B}\right)_{\phi}}{r\sin\theta}\right]_l^m


The Pseudospectral Approach
---------------------------

Expand Down
Loading