Skip to content

gcr1218/recommend

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

47 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Build Status Coverage Status Recommend

Simple recommendatnion system implementation with Python

Current model:

  • Probabilistic Matrix Factorization
  • Bayesian Matrix Factorization
  • Alternating Least Squares with Weighted Lambda Regularization (ALS-WR)

Reference:

  • "Probabilistic Matrix Factorization", R. Salakhutdinov and A.Mnih., NIPS 2008
  • "Bayesian Probabilistic Matrix Factorization using MCMC", R. Salakhutdinov and A.Mnih., ICML 2008
  • Matlab code: http://www.cs.toronto.edu/~rsalakhu/BPMF.html
  • "Large-scale Parallel Collaborative Filtering for the Netflix Prize", Y. Zhou, D. Wilkinson, R. Schreiber and R. Pan, 2008

Install:

# clone repoisitory
git clone [email protected]:chyikwei/recommend.git
cd recommend

# install numpy & scipy
pip install -r requirements.txt
pip install .

Getting started:

To run BPMF with MovieLens 1M dataset: First, download MovieLens 1M dataset and unzip it (data will be in ml-1m folder). Then run:

>>> import numpy as np
>>> from recommend.bpmf import BPMF
>>> from recommend.utils.evaluation import RMSE
>>> from recommend.utils.datasets import load_movielens_1m_ratings

# load user ratings
>>> ratings = load_movielens_1m_ratings('ml-1m/ratings.dat')
>>> n_user = max(ratings[:, 0])
>>> n_item = max(ratings[:, 1])
>>> ratings[:, (0, 1)] -= 1 # shift ids by 1 to let user_id & movie_id start from 0

# fit model
>>> bpmf = BPMF(n_user=n_user, n_item=n_item, n_feature=10,
                max_rating=5., min_rating=1., seed=0).fit(ratings, n_iters=20)
>>> RMSE(bpmf.predict(ratings[:, :2]), ratings[:,2]) # training RMSE
0.79784331768263683

# predict ratings for user 0 and item 0 to 9:
>>> bpmf.predict(np.array([[0, i] for i in xrange(10)]))
array([ 4.35574067,  3.60580936,  3.77778456,  3.4479072 ,  3.60901065,
        4.29750917,  3.66302187,  4.43915423,  3.85788772,  4.02423073])

Complete example can be found in examples/ folder. The script will download MovieLens 1M dataset automatically, run PMF(BPMF) model and show training/validation RMSE.

Running Test:

python setup.py test

or run test with coverage:

coverage run --source=recommend setup.py test
coverage report -m

Uninstall:

pip uninstall recommend

Notes:

  • Old version code can be found in v0.0.1. It contains a Probabilistic Matrix Factorization model with theano implementation.

About

recommendation system with python

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%