Skip to content

flatironinstitute/finufft

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Flatiron Institute Nonuniform Fast Fourier Transform library: FINUFFT

Actions status Read the Docs   Python wrapper: PyPI - Downloads

Principal author Alex H. Barnett ([email protected]), main co-developers Jeremy F. Magland, Ludvig af Klinteberg, Yu-hsuan "Melody" Shih, Libin Lu, Joakim Andén, Marco Barbone, Robert Blackwell, and Martin Reinecke; see docs/ackn.rst for full list of contributors. ​

This is a lightweight CPU library to compute the three standard types of nonuniform FFT to a specified precision, in one, two, or three dimensions. It is written in C++ with interfaces to C, Fortran, MATLAB/octave, Python, and (in a separate repository) Julia. It now also integrates the GPU CUDA library cuFINUFFT.

Docs and installation

Please see the online documentation which can also be downloaded as a PDF manual, and a project overview. You will also want to see CPU example codes in the directories examples, test, fortran, matlab/test, matlab/examples, python/finufft/test, etc, and GPU examples in examples/cuda, test/cuda, etc.

If you cannot build via cMake, try the makefile. Python users try pip install finufft. See the docs for details. See our GitHub Issues for tips.

If you prefer to read text files, the source to generate the above documentation is in human-readable (mostly .rst) files as follows:

  • docs/install.rst : installation and compilation instructions
  • docs/install_gpu.rst : installation and compilation for GPU (CUDA)
  • docs/dirs.rst : explanation of directories and files in the package
  • docs/math.rst : mathematical definitions
  • docs/cex.rst : example usage from C++/C
  • docs/c.rst : documentation of C++/C function API
  • docs/c_gpu.rst : documentation of C++/C function API for GPU library
  • docs/opts.rst : optional parameters
  • docs/error.rst : error codes
  • docs/trouble.rst : troubleshooting advice
  • docs/tut.rst and tutorial/* : tutorial application examples
  • docs/fortran.rst : usage examples from Fortran, documentation of interface
  • docs/matlab.rst and docs/matlabhelp.raw : using the MATLAB/Octave interface
  • docs/python.rst and python/*/_interfaces.py : using the Python interface
  • docs/python_gpu.rst : Python interface to GPU library
  • docs/julia.rst : information for Julia users
  • docs/devnotes.rst: notes/guide for developers
  • docs/related.rst : other recommended NUFFT packages
  • docs/users.rst : some known users of FINUFFT, dependent packages
  • docs/ackn.rst : authors and acknowledgments
  • docs/refs.rst : journal article references (ours and others)

Support

FINUFFT/cuFINUFFT was developed at, and is supported by, the Flatiron Institute at the Simons Foundation.

Citing

If you find (cu)FINUFFT useful in your work, please star this repository and cite it and the following. It will help us to improve the library if you also describe your use case parameters here.

For FINUFFT (CPU library):

A parallel non-uniform fast Fourier transform library based on an ``exponential of semicircle'' kernel. A. H. Barnett, J. F. Magland, and L. af Klinteberg. SIAM J. Sci. Comput. 41(5), C479-C504 (2019).

For cuFINUFFT (GPU library):

cuFINUFFT: a load-balanced GPU library for general-purpose nonuniform FFTs, Yu-hsuan Shih, Garrett Wright, Joakim Andén, Johannes Blaschke, Alex H. Barnett, PDSEC2021 workshop of the IPDPS2021 conference. https://arxiv.org/abs/2102.08463