Skip to content

Commit

Permalink
Add Secp curve library and function to derive address from priv key
Browse files Browse the repository at this point in the history
  • Loading branch information
ferranbt committed Jun 5, 2024
1 parent 09bcc1d commit b6d004c
Show file tree
Hide file tree
Showing 4 changed files with 449 additions and 1 deletion.
19 changes: 18 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -170,6 +170,22 @@ contract Example {
}
```

## crypto/Secp256k1.sol

Helper library to interact with the `secp256k1` curve.

```solidity
import "src/crypto/Secp256k1.sol";
contract Example {
function example() public {
// string memory privateKey = Suave.privateKeyGen(Suave.CryptoSignature.SECP256);
string memory privateKey = "b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291";
address found = Secp256k1.deriveAddress(privateKey);
}
}
```

## Forge integration

In order to use `forge`, you need to have a running `Suave` node and the `suave` binary in your path.
Expand Down Expand Up @@ -210,13 +226,14 @@ Use the `setConfidentialInputs` function to set the confidential inputs during t
import "forge-std/Test.sol";
import "src/Test.sol";
import "src/suavelib/Suave.sol";
import "src/Context.sol";
contract TestForge is Test, SuaveEnabled {
function testConfidentialInputs() public {
bytes memory input = hex"abcd";
ctx.setConfidentialInputs(input);
bytes memory found2 = Suave.confidentialInputs();
bytes memory found2 = Context.confidentialInputs();
assertEq0(input, found2);
}
}
Expand Down
327 changes: 327 additions & 0 deletions src/crypto/EllipticCurve.sol
Original file line number Diff line number Diff line change
@@ -0,0 +1,327 @@
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

/**
* @title Elliptic Curve Library
* @dev Library providing arithmetic operations over elliptic curves.
* This library does not check whether the inserted points belong to the curve
* `isOnCurve` function should be used by the library user to check the aforementioned statement.
* @author Witnet Foundation
*/
library EllipticCurve {
// Pre-computed constant for 2 ** 255
uint256 private constant U255_MAX_PLUS_1 =
57896044618658097711785492504343953926634992332820282019728792003956564819968;

/// @dev Modular euclidean inverse of a number (mod p).
/// @param _x The number
/// @param _pp The modulus
/// @return q such that x*q = 1 (mod _pp)
function invMod(uint256 _x, uint256 _pp) internal pure returns (uint256) {
require(_x != 0 && _x != _pp && _pp != 0, "Invalid number");
uint256 q = 0;
uint256 newT = 1;
uint256 r = _pp;
uint256 t;
while (_x != 0) {
t = r / _x;
(q, newT) = (newT, addmod(q, (_pp - mulmod(t, newT, _pp)), _pp));
(r, _x) = (_x, r - t * _x);
}

return q;
}

/// @dev Modular exponentiation, b^e % _pp.
/// Source: https://github.com/androlo/standard-contracts/blob/master/contracts/src/crypto/ECCMath.sol
/// @param _base base
/// @param _exp exponent
/// @param _pp modulus
/// @return r such that r = b**e (mod _pp)
function expMod(uint256 _base, uint256 _exp, uint256 _pp) internal pure returns (uint256) {
require(_pp != 0, "EllipticCurve: modulus is zero");

if (_base == 0) return 0;
if (_exp == 0) return 1;

uint256 r = 1;
uint256 bit = U255_MAX_PLUS_1;
assembly {
for {} gt(bit, 0) {} {
r := mulmod(mulmod(r, r, _pp), exp(_base, iszero(iszero(and(_exp, bit)))), _pp)
r := mulmod(mulmod(r, r, _pp), exp(_base, iszero(iszero(and(_exp, div(bit, 2))))), _pp)
r := mulmod(mulmod(r, r, _pp), exp(_base, iszero(iszero(and(_exp, div(bit, 4))))), _pp)
r := mulmod(mulmod(r, r, _pp), exp(_base, iszero(iszero(and(_exp, div(bit, 8))))), _pp)
bit := div(bit, 16)
}
}

return r;
}

/// @dev Converts a point (x, y, z) expressed in Jacobian coordinates to affine coordinates (x', y', 1).
/// @param _x coordinate x
/// @param _y coordinate y
/// @param _z coordinate z
/// @param _pp the modulus
/// @return (x', y') affine coordinates
function toAffine(uint256 _x, uint256 _y, uint256 _z, uint256 _pp) internal pure returns (uint256, uint256) {
uint256 zInv = invMod(_z, _pp);
uint256 zInv2 = mulmod(zInv, zInv, _pp);
uint256 x2 = mulmod(_x, zInv2, _pp);
uint256 y2 = mulmod(_y, mulmod(zInv, zInv2, _pp), _pp);

return (x2, y2);
}

/// @dev Derives the y coordinate from a compressed-format point x [[SEC-1]](https://www.secg.org/SEC1-Ver-1.0.pdf).
/// @param _prefix parity byte (0x02 even, 0x03 odd)
/// @param _x coordinate x
/// @param _aa constant of curve
/// @param _bb constant of curve
/// @param _pp the modulus
/// @return y coordinate y
function deriveY(uint8 _prefix, uint256 _x, uint256 _aa, uint256 _bb, uint256 _pp)
internal
pure
returns (uint256)
{
require(_prefix == 0x02 || _prefix == 0x03, "EllipticCurve:innvalid compressed EC point prefix");

// x^3 + ax + b
uint256 y2 = addmod(mulmod(_x, mulmod(_x, _x, _pp), _pp), addmod(mulmod(_x, _aa, _pp), _bb, _pp), _pp);
y2 = expMod(y2, (_pp + 1) / 4, _pp);
// uint256 cmp = yBit ^ y_ & 1;
uint256 y = (y2 + _prefix) % 2 == 0 ? y2 : _pp - y2;

return y;
}

/// @dev Check whether point (x,y) is on curve defined by a, b, and _pp.
/// @param _x coordinate x of P1
/// @param _y coordinate y of P1
/// @param _aa constant of curve
/// @param _bb constant of curve
/// @param _pp the modulus
/// @return true if x,y in the curve, false else
function isOnCurve(uint256 _x, uint256 _y, uint256 _aa, uint256 _bb, uint256 _pp) internal pure returns (bool) {
if (0 == _x || _x >= _pp || 0 == _y || _y >= _pp) {
return false;
}
// y^2
uint256 lhs = mulmod(_y, _y, _pp);
// x^3
uint256 rhs = mulmod(mulmod(_x, _x, _pp), _x, _pp);
if (_aa != 0) {
// x^3 + a*x
rhs = addmod(rhs, mulmod(_x, _aa, _pp), _pp);
}
if (_bb != 0) {
// x^3 + a*x + b
rhs = addmod(rhs, _bb, _pp);
}

return lhs == rhs;
}

/// @dev Calculate inverse (x, -y) of point (x, y).
/// @param _x coordinate x of P1
/// @param _y coordinate y of P1
/// @param _pp the modulus
/// @return (x, -y)
function ecInv(uint256 _x, uint256 _y, uint256 _pp) internal pure returns (uint256, uint256) {
return (_x, (_pp - _y) % _pp);
}

/// @dev Add two points (x1, y1) and (x2, y2) in affine coordinates.
/// @param _x1 coordinate x of P1
/// @param _y1 coordinate y of P1
/// @param _x2 coordinate x of P2
/// @param _y2 coordinate y of P2
/// @param _aa constant of the curve
/// @param _pp the modulus
/// @return (qx, qy) = P1+P2 in affine coordinates
function ecAdd(uint256 _x1, uint256 _y1, uint256 _x2, uint256 _y2, uint256 _aa, uint256 _pp)
internal
pure
returns (uint256, uint256)
{
uint256 x = 0;
uint256 y = 0;
uint256 z = 0;

// Double if x1==x2 else add
if (_x1 == _x2) {
// y1 = -y2 mod p
if (addmod(_y1, _y2, _pp) == 0) {
return (0, 0);
} else {
// P1 = P2
(x, y, z) = jacDouble(_x1, _y1, 1, _aa, _pp);
}
} else {
(x, y, z) = jacAdd(_x1, _y1, 1, _x2, _y2, 1, _pp);
}
// Get back to affine
return toAffine(x, y, z, _pp);
}

/// @dev Substract two points (x1, y1) and (x2, y2) in affine coordinates.
/// @param _x1 coordinate x of P1
/// @param _y1 coordinate y of P1
/// @param _x2 coordinate x of P2
/// @param _y2 coordinate y of P2
/// @param _aa constant of the curve
/// @param _pp the modulus
/// @return (qx, qy) = P1-P2 in affine coordinates
function ecSub(uint256 _x1, uint256 _y1, uint256 _x2, uint256 _y2, uint256 _aa, uint256 _pp)
internal
pure
returns (uint256, uint256)
{
// invert square
(uint256 x, uint256 y) = ecInv(_x2, _y2, _pp);
// P1-square
return ecAdd(_x1, _y1, x, y, _aa, _pp);
}

/// @dev Multiply point (x1, y1, z1) times d in affine coordinates.
/// @param _k scalar to multiply
/// @param _x coordinate x of P1
/// @param _y coordinate y of P1
/// @param _aa constant of the curve
/// @param _pp the modulus
/// @return (qx, qy) = d*P in affine coordinates
function ecMul(uint256 _k, uint256 _x, uint256 _y, uint256 _aa, uint256 _pp)
internal
pure
returns (uint256, uint256)
{
// Jacobian multiplication
(uint256 x1, uint256 y1, uint256 z1) = jacMul(_k, _x, _y, 1, _aa, _pp);
// Get back to affine
return toAffine(x1, y1, z1, _pp);
}

/// @dev Adds two points (x1, y1, z1) and (x2 y2, z2).
/// @param _x1 coordinate x of P1
/// @param _y1 coordinate y of P1
/// @param _z1 coordinate z of P1
/// @param _x2 coordinate x of square
/// @param _y2 coordinate y of square
/// @param _z2 coordinate z of square
/// @param _pp the modulus
/// @return (qx, qy, qz) P1+square in Jacobian
function jacAdd(uint256 _x1, uint256 _y1, uint256 _z1, uint256 _x2, uint256 _y2, uint256 _z2, uint256 _pp)
internal
pure
returns (uint256, uint256, uint256)
{
if (_x1 == 0 && _y1 == 0) return (_x2, _y2, _z2);
if (_x2 == 0 && _y2 == 0) return (_x1, _y1, _z1);

// We follow the equations described in https://pdfs.semanticscholar.org/5c64/29952e08025a9649c2b0ba32518e9a7fb5c2.pdf Section 5
uint256[4] memory zs; // z1^2, z1^3, z2^2, z2^3
zs[0] = mulmod(_z1, _z1, _pp);
zs[1] = mulmod(_z1, zs[0], _pp);
zs[2] = mulmod(_z2, _z2, _pp);
zs[3] = mulmod(_z2, zs[2], _pp);

// u1, s1, u2, s2
zs = [mulmod(_x1, zs[2], _pp), mulmod(_y1, zs[3], _pp), mulmod(_x2, zs[0], _pp), mulmod(_y2, zs[1], _pp)];

// In case of zs[0] == zs[2] && zs[1] == zs[3], double function should be used
require(zs[0] != zs[2] || zs[1] != zs[3], "Use jacDouble function instead");

uint256[4] memory hr;
//h
hr[0] = addmod(zs[2], _pp - zs[0], _pp);
//r
hr[1] = addmod(zs[3], _pp - zs[1], _pp);
//h^2
hr[2] = mulmod(hr[0], hr[0], _pp);
// h^3
hr[3] = mulmod(hr[2], hr[0], _pp);
// qx = -h^3 -2u1h^2+r^2
uint256 qx = addmod(mulmod(hr[1], hr[1], _pp), _pp - hr[3], _pp);
qx = addmod(qx, _pp - mulmod(2, mulmod(zs[0], hr[2], _pp), _pp), _pp);
// qy = -s1*z1*h^3+r(u1*h^2 -x^3)
uint256 qy = mulmod(hr[1], addmod(mulmod(zs[0], hr[2], _pp), _pp - qx, _pp), _pp);
qy = addmod(qy, _pp - mulmod(zs[1], hr[3], _pp), _pp);
// qz = h*z1*z2
uint256 qz = mulmod(hr[0], mulmod(_z1, _z2, _pp), _pp);
return (qx, qy, qz);
}

/// @dev Doubles a points (x, y, z).
/// @param _x coordinate x of P1
/// @param _y coordinate y of P1
/// @param _z coordinate z of P1
/// @param _aa the a scalar in the curve equation
/// @param _pp the modulus
/// @return (qx, qy, qz) 2P in Jacobian
function jacDouble(uint256 _x, uint256 _y, uint256 _z, uint256 _aa, uint256 _pp)
internal
pure
returns (uint256, uint256, uint256)
{
if (_z == 0) return (_x, _y, _z);

// We follow the equations described in https://pdfs.semanticscholar.org/5c64/29952e08025a9649c2b0ba32518e9a7fb5c2.pdf Section 5
// Note: there is a bug in the paper regarding the m parameter, M=3*(x1^2)+a*(z1^4)
// x, y, z at this point represent the squares of _x, _y, _z
uint256 x = mulmod(_x, _x, _pp); //x1^2
uint256 y = mulmod(_y, _y, _pp); //y1^2
uint256 z = mulmod(_z, _z, _pp); //z1^2

// s
uint256 s = mulmod(4, mulmod(_x, y, _pp), _pp);
// m
uint256 m = addmod(mulmod(3, x, _pp), mulmod(_aa, mulmod(z, z, _pp), _pp), _pp);

// x, y, z at this point will be reassigned and rather represent qx, qy, qz from the paper
// This allows to reduce the gas cost and stack footprint of the algorithm
// qx
x = addmod(mulmod(m, m, _pp), _pp - addmod(s, s, _pp), _pp);
// qy = -8*y1^4 + M(S-T)
y = addmod(mulmod(m, addmod(s, _pp - x, _pp), _pp), _pp - mulmod(8, mulmod(y, y, _pp), _pp), _pp);
// qz = 2*y1*z1
z = mulmod(2, mulmod(_y, _z, _pp), _pp);

return (x, y, z);
}

/// @dev Multiply point (x, y, z) times d.
/// @param _d scalar to multiply
/// @param _x coordinate x of P1
/// @param _y coordinate y of P1
/// @param _z coordinate z of P1
/// @param _aa constant of curve
/// @param _pp the modulus
/// @return (qx, qy, qz) d*P1 in Jacobian
function jacMul(uint256 _d, uint256 _x, uint256 _y, uint256 _z, uint256 _aa, uint256 _pp)
internal
pure
returns (uint256, uint256, uint256)
{
// Early return in case that `_d == 0`
if (_d == 0) {
return (_x, _y, _z);
}

uint256 remaining = _d;
uint256 qx = 0;
uint256 qy = 0;
uint256 qz = 1;

// Double and add algorithm
while (remaining != 0) {
if ((remaining & 1) != 0) {
(qx, qy, qz) = jacAdd(qx, qy, qz, _x, _y, _z, _pp);
}
remaining = remaining / 2;
(_x, _y, _z) = jacDouble(_x, _y, _z, _aa, _pp);
}
return (qx, qy, qz);
}
}
Loading

0 comments on commit b6d004c

Please sign in to comment.