-
Notifications
You must be signed in to change notification settings - Fork 13
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add Secp curve library and function to derive address from priv key
- Loading branch information
Showing
4 changed files
with
449 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,327 @@ | ||
// SPDX-License-Identifier: MIT | ||
pragma solidity ^0.8.0; | ||
|
||
/** | ||
* @title Elliptic Curve Library | ||
* @dev Library providing arithmetic operations over elliptic curves. | ||
* This library does not check whether the inserted points belong to the curve | ||
* `isOnCurve` function should be used by the library user to check the aforementioned statement. | ||
* @author Witnet Foundation | ||
*/ | ||
library EllipticCurve { | ||
// Pre-computed constant for 2 ** 255 | ||
uint256 private constant U255_MAX_PLUS_1 = | ||
57896044618658097711785492504343953926634992332820282019728792003956564819968; | ||
|
||
/// @dev Modular euclidean inverse of a number (mod p). | ||
/// @param _x The number | ||
/// @param _pp The modulus | ||
/// @return q such that x*q = 1 (mod _pp) | ||
function invMod(uint256 _x, uint256 _pp) internal pure returns (uint256) { | ||
require(_x != 0 && _x != _pp && _pp != 0, "Invalid number"); | ||
uint256 q = 0; | ||
uint256 newT = 1; | ||
uint256 r = _pp; | ||
uint256 t; | ||
while (_x != 0) { | ||
t = r / _x; | ||
(q, newT) = (newT, addmod(q, (_pp - mulmod(t, newT, _pp)), _pp)); | ||
(r, _x) = (_x, r - t * _x); | ||
} | ||
|
||
return q; | ||
} | ||
|
||
/// @dev Modular exponentiation, b^e % _pp. | ||
/// Source: https://github.com/androlo/standard-contracts/blob/master/contracts/src/crypto/ECCMath.sol | ||
/// @param _base base | ||
/// @param _exp exponent | ||
/// @param _pp modulus | ||
/// @return r such that r = b**e (mod _pp) | ||
function expMod(uint256 _base, uint256 _exp, uint256 _pp) internal pure returns (uint256) { | ||
require(_pp != 0, "EllipticCurve: modulus is zero"); | ||
|
||
if (_base == 0) return 0; | ||
if (_exp == 0) return 1; | ||
|
||
uint256 r = 1; | ||
uint256 bit = U255_MAX_PLUS_1; | ||
assembly { | ||
for {} gt(bit, 0) {} { | ||
r := mulmod(mulmod(r, r, _pp), exp(_base, iszero(iszero(and(_exp, bit)))), _pp) | ||
r := mulmod(mulmod(r, r, _pp), exp(_base, iszero(iszero(and(_exp, div(bit, 2))))), _pp) | ||
r := mulmod(mulmod(r, r, _pp), exp(_base, iszero(iszero(and(_exp, div(bit, 4))))), _pp) | ||
r := mulmod(mulmod(r, r, _pp), exp(_base, iszero(iszero(and(_exp, div(bit, 8))))), _pp) | ||
bit := div(bit, 16) | ||
} | ||
} | ||
|
||
return r; | ||
} | ||
|
||
/// @dev Converts a point (x, y, z) expressed in Jacobian coordinates to affine coordinates (x', y', 1). | ||
/// @param _x coordinate x | ||
/// @param _y coordinate y | ||
/// @param _z coordinate z | ||
/// @param _pp the modulus | ||
/// @return (x', y') affine coordinates | ||
function toAffine(uint256 _x, uint256 _y, uint256 _z, uint256 _pp) internal pure returns (uint256, uint256) { | ||
uint256 zInv = invMod(_z, _pp); | ||
uint256 zInv2 = mulmod(zInv, zInv, _pp); | ||
uint256 x2 = mulmod(_x, zInv2, _pp); | ||
uint256 y2 = mulmod(_y, mulmod(zInv, zInv2, _pp), _pp); | ||
|
||
return (x2, y2); | ||
} | ||
|
||
/// @dev Derives the y coordinate from a compressed-format point x [[SEC-1]](https://www.secg.org/SEC1-Ver-1.0.pdf). | ||
/// @param _prefix parity byte (0x02 even, 0x03 odd) | ||
/// @param _x coordinate x | ||
/// @param _aa constant of curve | ||
/// @param _bb constant of curve | ||
/// @param _pp the modulus | ||
/// @return y coordinate y | ||
function deriveY(uint8 _prefix, uint256 _x, uint256 _aa, uint256 _bb, uint256 _pp) | ||
internal | ||
pure | ||
returns (uint256) | ||
{ | ||
require(_prefix == 0x02 || _prefix == 0x03, "EllipticCurve:innvalid compressed EC point prefix"); | ||
|
||
// x^3 + ax + b | ||
uint256 y2 = addmod(mulmod(_x, mulmod(_x, _x, _pp), _pp), addmod(mulmod(_x, _aa, _pp), _bb, _pp), _pp); | ||
y2 = expMod(y2, (_pp + 1) / 4, _pp); | ||
// uint256 cmp = yBit ^ y_ & 1; | ||
uint256 y = (y2 + _prefix) % 2 == 0 ? y2 : _pp - y2; | ||
|
||
return y; | ||
} | ||
|
||
/// @dev Check whether point (x,y) is on curve defined by a, b, and _pp. | ||
/// @param _x coordinate x of P1 | ||
/// @param _y coordinate y of P1 | ||
/// @param _aa constant of curve | ||
/// @param _bb constant of curve | ||
/// @param _pp the modulus | ||
/// @return true if x,y in the curve, false else | ||
function isOnCurve(uint256 _x, uint256 _y, uint256 _aa, uint256 _bb, uint256 _pp) internal pure returns (bool) { | ||
if (0 == _x || _x >= _pp || 0 == _y || _y >= _pp) { | ||
return false; | ||
} | ||
// y^2 | ||
uint256 lhs = mulmod(_y, _y, _pp); | ||
// x^3 | ||
uint256 rhs = mulmod(mulmod(_x, _x, _pp), _x, _pp); | ||
if (_aa != 0) { | ||
// x^3 + a*x | ||
rhs = addmod(rhs, mulmod(_x, _aa, _pp), _pp); | ||
} | ||
if (_bb != 0) { | ||
// x^3 + a*x + b | ||
rhs = addmod(rhs, _bb, _pp); | ||
} | ||
|
||
return lhs == rhs; | ||
} | ||
|
||
/// @dev Calculate inverse (x, -y) of point (x, y). | ||
/// @param _x coordinate x of P1 | ||
/// @param _y coordinate y of P1 | ||
/// @param _pp the modulus | ||
/// @return (x, -y) | ||
function ecInv(uint256 _x, uint256 _y, uint256 _pp) internal pure returns (uint256, uint256) { | ||
return (_x, (_pp - _y) % _pp); | ||
} | ||
|
||
/// @dev Add two points (x1, y1) and (x2, y2) in affine coordinates. | ||
/// @param _x1 coordinate x of P1 | ||
/// @param _y1 coordinate y of P1 | ||
/// @param _x2 coordinate x of P2 | ||
/// @param _y2 coordinate y of P2 | ||
/// @param _aa constant of the curve | ||
/// @param _pp the modulus | ||
/// @return (qx, qy) = P1+P2 in affine coordinates | ||
function ecAdd(uint256 _x1, uint256 _y1, uint256 _x2, uint256 _y2, uint256 _aa, uint256 _pp) | ||
internal | ||
pure | ||
returns (uint256, uint256) | ||
{ | ||
uint256 x = 0; | ||
uint256 y = 0; | ||
uint256 z = 0; | ||
|
||
// Double if x1==x2 else add | ||
if (_x1 == _x2) { | ||
// y1 = -y2 mod p | ||
if (addmod(_y1, _y2, _pp) == 0) { | ||
return (0, 0); | ||
} else { | ||
// P1 = P2 | ||
(x, y, z) = jacDouble(_x1, _y1, 1, _aa, _pp); | ||
} | ||
} else { | ||
(x, y, z) = jacAdd(_x1, _y1, 1, _x2, _y2, 1, _pp); | ||
} | ||
// Get back to affine | ||
return toAffine(x, y, z, _pp); | ||
} | ||
|
||
/// @dev Substract two points (x1, y1) and (x2, y2) in affine coordinates. | ||
/// @param _x1 coordinate x of P1 | ||
/// @param _y1 coordinate y of P1 | ||
/// @param _x2 coordinate x of P2 | ||
/// @param _y2 coordinate y of P2 | ||
/// @param _aa constant of the curve | ||
/// @param _pp the modulus | ||
/// @return (qx, qy) = P1-P2 in affine coordinates | ||
function ecSub(uint256 _x1, uint256 _y1, uint256 _x2, uint256 _y2, uint256 _aa, uint256 _pp) | ||
internal | ||
pure | ||
returns (uint256, uint256) | ||
{ | ||
// invert square | ||
(uint256 x, uint256 y) = ecInv(_x2, _y2, _pp); | ||
// P1-square | ||
return ecAdd(_x1, _y1, x, y, _aa, _pp); | ||
} | ||
|
||
/// @dev Multiply point (x1, y1, z1) times d in affine coordinates. | ||
/// @param _k scalar to multiply | ||
/// @param _x coordinate x of P1 | ||
/// @param _y coordinate y of P1 | ||
/// @param _aa constant of the curve | ||
/// @param _pp the modulus | ||
/// @return (qx, qy) = d*P in affine coordinates | ||
function ecMul(uint256 _k, uint256 _x, uint256 _y, uint256 _aa, uint256 _pp) | ||
internal | ||
pure | ||
returns (uint256, uint256) | ||
{ | ||
// Jacobian multiplication | ||
(uint256 x1, uint256 y1, uint256 z1) = jacMul(_k, _x, _y, 1, _aa, _pp); | ||
// Get back to affine | ||
return toAffine(x1, y1, z1, _pp); | ||
} | ||
|
||
/// @dev Adds two points (x1, y1, z1) and (x2 y2, z2). | ||
/// @param _x1 coordinate x of P1 | ||
/// @param _y1 coordinate y of P1 | ||
/// @param _z1 coordinate z of P1 | ||
/// @param _x2 coordinate x of square | ||
/// @param _y2 coordinate y of square | ||
/// @param _z2 coordinate z of square | ||
/// @param _pp the modulus | ||
/// @return (qx, qy, qz) P1+square in Jacobian | ||
function jacAdd(uint256 _x1, uint256 _y1, uint256 _z1, uint256 _x2, uint256 _y2, uint256 _z2, uint256 _pp) | ||
internal | ||
pure | ||
returns (uint256, uint256, uint256) | ||
{ | ||
if (_x1 == 0 && _y1 == 0) return (_x2, _y2, _z2); | ||
if (_x2 == 0 && _y2 == 0) return (_x1, _y1, _z1); | ||
|
||
// We follow the equations described in https://pdfs.semanticscholar.org/5c64/29952e08025a9649c2b0ba32518e9a7fb5c2.pdf Section 5 | ||
uint256[4] memory zs; // z1^2, z1^3, z2^2, z2^3 | ||
zs[0] = mulmod(_z1, _z1, _pp); | ||
zs[1] = mulmod(_z1, zs[0], _pp); | ||
zs[2] = mulmod(_z2, _z2, _pp); | ||
zs[3] = mulmod(_z2, zs[2], _pp); | ||
|
||
// u1, s1, u2, s2 | ||
zs = [mulmod(_x1, zs[2], _pp), mulmod(_y1, zs[3], _pp), mulmod(_x2, zs[0], _pp), mulmod(_y2, zs[1], _pp)]; | ||
|
||
// In case of zs[0] == zs[2] && zs[1] == zs[3], double function should be used | ||
require(zs[0] != zs[2] || zs[1] != zs[3], "Use jacDouble function instead"); | ||
|
||
uint256[4] memory hr; | ||
//h | ||
hr[0] = addmod(zs[2], _pp - zs[0], _pp); | ||
//r | ||
hr[1] = addmod(zs[3], _pp - zs[1], _pp); | ||
//h^2 | ||
hr[2] = mulmod(hr[0], hr[0], _pp); | ||
// h^3 | ||
hr[3] = mulmod(hr[2], hr[0], _pp); | ||
// qx = -h^3 -2u1h^2+r^2 | ||
uint256 qx = addmod(mulmod(hr[1], hr[1], _pp), _pp - hr[3], _pp); | ||
qx = addmod(qx, _pp - mulmod(2, mulmod(zs[0], hr[2], _pp), _pp), _pp); | ||
// qy = -s1*z1*h^3+r(u1*h^2 -x^3) | ||
uint256 qy = mulmod(hr[1], addmod(mulmod(zs[0], hr[2], _pp), _pp - qx, _pp), _pp); | ||
qy = addmod(qy, _pp - mulmod(zs[1], hr[3], _pp), _pp); | ||
// qz = h*z1*z2 | ||
uint256 qz = mulmod(hr[0], mulmod(_z1, _z2, _pp), _pp); | ||
return (qx, qy, qz); | ||
} | ||
|
||
/// @dev Doubles a points (x, y, z). | ||
/// @param _x coordinate x of P1 | ||
/// @param _y coordinate y of P1 | ||
/// @param _z coordinate z of P1 | ||
/// @param _aa the a scalar in the curve equation | ||
/// @param _pp the modulus | ||
/// @return (qx, qy, qz) 2P in Jacobian | ||
function jacDouble(uint256 _x, uint256 _y, uint256 _z, uint256 _aa, uint256 _pp) | ||
internal | ||
pure | ||
returns (uint256, uint256, uint256) | ||
{ | ||
if (_z == 0) return (_x, _y, _z); | ||
|
||
// We follow the equations described in https://pdfs.semanticscholar.org/5c64/29952e08025a9649c2b0ba32518e9a7fb5c2.pdf Section 5 | ||
// Note: there is a bug in the paper regarding the m parameter, M=3*(x1^2)+a*(z1^4) | ||
// x, y, z at this point represent the squares of _x, _y, _z | ||
uint256 x = mulmod(_x, _x, _pp); //x1^2 | ||
uint256 y = mulmod(_y, _y, _pp); //y1^2 | ||
uint256 z = mulmod(_z, _z, _pp); //z1^2 | ||
|
||
// s | ||
uint256 s = mulmod(4, mulmod(_x, y, _pp), _pp); | ||
// m | ||
uint256 m = addmod(mulmod(3, x, _pp), mulmod(_aa, mulmod(z, z, _pp), _pp), _pp); | ||
|
||
// x, y, z at this point will be reassigned and rather represent qx, qy, qz from the paper | ||
// This allows to reduce the gas cost and stack footprint of the algorithm | ||
// qx | ||
x = addmod(mulmod(m, m, _pp), _pp - addmod(s, s, _pp), _pp); | ||
// qy = -8*y1^4 + M(S-T) | ||
y = addmod(mulmod(m, addmod(s, _pp - x, _pp), _pp), _pp - mulmod(8, mulmod(y, y, _pp), _pp), _pp); | ||
// qz = 2*y1*z1 | ||
z = mulmod(2, mulmod(_y, _z, _pp), _pp); | ||
|
||
return (x, y, z); | ||
} | ||
|
||
/// @dev Multiply point (x, y, z) times d. | ||
/// @param _d scalar to multiply | ||
/// @param _x coordinate x of P1 | ||
/// @param _y coordinate y of P1 | ||
/// @param _z coordinate z of P1 | ||
/// @param _aa constant of curve | ||
/// @param _pp the modulus | ||
/// @return (qx, qy, qz) d*P1 in Jacobian | ||
function jacMul(uint256 _d, uint256 _x, uint256 _y, uint256 _z, uint256 _aa, uint256 _pp) | ||
internal | ||
pure | ||
returns (uint256, uint256, uint256) | ||
{ | ||
// Early return in case that `_d == 0` | ||
if (_d == 0) { | ||
return (_x, _y, _z); | ||
} | ||
|
||
uint256 remaining = _d; | ||
uint256 qx = 0; | ||
uint256 qy = 0; | ||
uint256 qz = 1; | ||
|
||
// Double and add algorithm | ||
while (remaining != 0) { | ||
if ((remaining & 1) != 0) { | ||
(qx, qy, qz) = jacAdd(qx, qy, qz, _x, _y, _z, _pp); | ||
} | ||
remaining = remaining / 2; | ||
(_x, _y, _z) = jacDouble(_x, _y, _z, _aa, _pp); | ||
} | ||
return (qx, qy, qz); | ||
} | ||
} |
Oops, something went wrong.