Skip to content

Commit

Permalink
0.90.2
Browse files Browse the repository at this point in the history
  • Loading branch information
FBurkhardt committed Oct 2, 2024
1 parent 5fc59b1 commit 29b56ae
Show file tree
Hide file tree
Showing 6 changed files with 68 additions and 40 deletions.
9 changes: 9 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
@@ -1,6 +1,15 @@
Changelog
=========

Version 0.90.2
--------------
* added probability output to finetuning classification models
* switched path to prob. output from "store" to "results"

Version 0.90.1
--------------
* Add balancing for finetune and update data README

Version 0.90.0
--------------
* augmentation can now be done without target
Expand Down
49 changes: 21 additions & 28 deletions make_package.sh
Original file line number Diff line number Diff line change
@@ -1,31 +1,24 @@
#!/bin/bash

git add nkululeko/*py
for value in augmenting autopredict data feat_extract losses models reporting segmenting utils
do
git add nkululeko/$value/*.py
done
for data in aesdd androids androids_orig androids_test ased asvp-esd baved cafe clac cmu-mosei crema-d demos ekorpus emns emodb emofilm EmoFilm emorynlp emov-db emovo emozionalmente enterface esd gerparas iemocap jl jtes laughter-types meld mesd mess mlendsnd msp-improv msp-podcast oreau2 portuguese ravdess savee shemo subesco syntact tess thorsten-emotional urdu vivae
do
git add data/$data/*.py
git add data/$data/*.md
done
git add README.md
git add requirements.txt
git add make_package.sh
git add test_runs.sh
git add data/README.md
git add tests/*.ini
git add CHANGELOG.md ini_file.md setup.cfg
if [ "$1" == "--notag" ]; then
git commit -m update
else
source nkululeko/constants.py
git commit -m $VERSION
git tag $VERSION
fi
git add nkululeko/*py
for value in augmenting autopredict data feat_extract losses models reporting segmenting utils
do
git add nkululeko/$value/*.py
done
for data in aesdd androids androids_orig androids_test ased asvp-esd baved cafe clac cmu-mosei crema-d demos ekorpus emns emodb emofilm EmoFilm emorynlp emov-db emovo emozionalmente enterface esd gerparas iemocap jl jtes laughter-types meld mesd mess mlendsnd msp-improv msp-podcast oreau2 portuguese ravdess savee shemo subesco syntact tess thorsten-emotional urdu vivae
do
git add data/$data/*.py
git add data/$data/*.md
done
git add README.md
git add requirements.txt
git add make_package.sh
git add test_runs.sh
git add data/README.md
git add tests/*.ini
git add CHANGELOG.md ini_file.md setup.cfg
source nkululeko/constants.py
git commit -m $VERSION
git tag $VERSION
git push

if ! [ "$1" == "--notag" ]; then
git push --tags
fi
git push --tags
2 changes: 1 addition & 1 deletion nkululeko/constants.py
Original file line number Diff line number Diff line change
@@ -1,2 +1,2 @@
VERSION = "0.90.0"
VERSION="0.90.2"
SAMPLING_RATE = 16000
42 changes: 34 additions & 8 deletions nkululeko/models/model_tuned.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,10 +30,16 @@ def __init__(self, df_train, df_test, feats_train, feats_test):
"""Constructor taking the configuration and all dataframes."""
super().__init__(df_train, df_test, feats_train, feats_test)
super().set_model_type("finetuned")
self.df_test, self.df_train, self.feats_test, self.feats_train = (
df_test,
df_train,
feats_test,
feats_train,
)
self.name = "finetuned_wav2vec2"
self.target = glob_conf.config["DATA"]["target"]
labels = glob_conf.labels
self.class_num = len(labels)
self.labels = glob_conf.labels
self.class_num = len(self.labels)
device = self.util.config_val("MODEL", "device", False)
if not device:
self.device = "cuda" if torch.cuda.is_available() else "cpu"
Expand Down Expand Up @@ -304,7 +310,7 @@ def train(self):
else:
self.util.error(f"criterion {criterion} not supported for classifier")
else:
self.criterion = self.util.config_val("MODEL", "loss", "ccc")
criterion = self.util.config_val("MODEL", "loss", "1-ccc")
if criterion == "1-ccc":
criterion = ConcordanceCorCoeff()
elif criterion == "mse":
Expand Down Expand Up @@ -402,7 +408,7 @@ def compute_loss(
self.load(self.run, self.epoch)

def get_predictions(self):
results = []
results = [[]].pop(0)
for (file, start, end), _ in audeer.progress_bar(
self.df_test.iterrows(),
total=len(self.df_test),
Expand All @@ -415,18 +421,37 @@ def get_predictions(self):
file, duration=end - start, offset=start, always_2d=True
)
assert sr == self.sampling_rate
predictions = self.model.predict(signal)
results.append(predictions.argmax())
return results
prediction = self.model.predict(signal)
results.append(prediction)
# results.append(predictions.argmax())
predictions = np.asarray(results)
if self.util.exp_is_classification():
# make a dataframe for the class probabilities
proba_d = {}
for c in range(self.class_num):
proba_d[c] = []
# get the class probabilities
# predictions = self.clf.predict_proba(self.feats_test.to_numpy())
# pred = self.clf.predict(features)
for i in range(self.class_num):
proba_d[i] = list(predictions.T[i])
probas = pd.DataFrame(proba_d)
probas = probas.set_index(self.df_test.index)
predictions = probas.idxmax(axis=1).values
else:
predictions = predictions.flatten()
probas = None
return predictions, probas

def predict(self):
"""Predict the whole eval feature set"""
predictions = self.get_predictions()
predictions, probas = self.get_predictions()
report = Reporter(
self.df_test[self.target].to_numpy().astype(float),
predictions,
self.run,
self.epoch_num,
probas=probas,
)
self._plot_epoch_progression(report)
return report
Expand All @@ -438,6 +463,7 @@ def _plot_epoch_progression(self, report):
)
with open(log_file, "r") as file:
data = file.read()
data = data.strip().replace("nan", "0")
list = ast.literal_eval(data)
epochs, vals, loss = [], [], []
for index, tp in enumerate(list):
Expand Down
4 changes: 2 additions & 2 deletions nkululeko/utils/util.py
Original file line number Diff line number Diff line change
Expand Up @@ -155,10 +155,10 @@ def get_save_name(self):
return f"{store}/{self.get_exp_name()}.pkl"

def get_pred_name(self):
store = self.get_path("store")
results_dir = self.get_path("res_dir")
target = self.get_target_name()
pred_name = self.get_model_description()
return f"{store}/pred_{target}_{pred_name}.csv"
return f"{results_dir}/pred_{target}_{pred_name}.csv"

def is_categorical(self, pd_series):
"""Check if a dataframe column is categorical."""
Expand Down
2 changes: 1 addition & 1 deletion tests/exp_agedb_os_mlp.ini
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@ layers = {'l1':1024, 'l2':128}
drop = .4
loss = 1-ccc
measure = ccc
patience = 5
patience = 10
[PLOT]
best_model = True
epoch_progression = True
Expand Down

0 comments on commit 29b56ae

Please sign in to comment.