Skip to content

fardeen0424/Izhikevich-Neuron-Model-Simulation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Izhikevich Neuron Model Simulation

This repository contains a Python implementation of the Izhikevich neuron model to simulate Regular Spiking (RS) neurons.

Table of Contents

Introduction

The Izhikevich neuron model is a mathematical representation of cortical spiking neurons. This simulation studies the RS neuron's response to varying external input levels.

Requirements

  • Python 3.x
  • NumPy
  • Matplotlib
  • Jupyter Notebook

Code Structure

  • Problem2.ipynb: Interactive Jupyter Notebook for simulation and plotting

How the Code Works

Imports

The code starts by importing necessary libraries:

  • numpy for numerical computations
  • matplotlib.pyplot for plotting

Izhikevich Model Implementation

The Izhikevich model is implemented using two coupled differential equations:

  • Equation (1): dv/dt = 0.04v^2 + 5v + 140 - u + I(t)
  • Equation (2): du/dt = a(bv - u)

with the condition:

  • if v >= 30, v = c, u = u + d

Simulation Parameters

The simulation parameters are:

  • a, b, c, d: Izhikevich model parameters
  • I_values: array of external input levels
  • steps: number of simulation steps
  • tau: time step

Simulation Loop

The simulation loop iterates over:

  • External input levels (I_values)
  • Time steps (steps)

Plotting

The code generates two plots:

  • Membrane potential time-series for varying input levels
  • Mean spike rate vs. input level plot

Running the Notebook

  1. Clone the repository: git clone https://github.com/fardeen0424/Izhikevich-Neuron-Model-Simulation
  2. Install required libraries: pip install numpy matplotlib
  3. Run Jupyter Notebook: jupyter notebook Problem2.ipynb
  4. Run Jupyter Notebook: jupyter notebook Problem3.ipynb
  5. Follow instructions in the notebook to simulate and plot RS neuron behavior

Example Plots

  • Membrane potential time-series for varying input levels

  • Untitled

  • Mean spike rate vs. input level plot

Untitled-1

References

  • Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14(6), 1569-1572.
  • Izhikevich, E. M. (2004). Which model to use for cortical spiking neurons? IEEE Transactions on Neural Networks, 15(5), 1063-1070.